Robot motion governing using upper limb EMG signal based on empirical mode decomposition

Hsiu Jen Liu*, Kuu-Young Young

*此作品的通信作者

研究成果: Conference contribution同行評審

4 引文 斯高帕斯(Scopus)

摘要

This paper presents a simple and effective approach to govern robot arm motion in real time using upper limb EMG signals. Considering the non-stationary and nonlinear characteristics of the EMG signals, in the design for feature extraction, we introduce the empirical mode decomposition (EMD) to decompose the EMG signals into intrinsic mode functions (IMFs). Each IMF represents different physical characteristic, so that the muscular movement can be recognized. We then integrate it with a so-called initial point detection method previously proposed to establish the mapping between the upper limb EMG signals and corresponding robot arm movements in real time. In addition, for each individual user, we adopt a fuzzy approach to select proper system parameters for motion classification. The experimental results show the feasibility of the proposed approach with accurate motion recognition.

原文English
主出版物標題2010 IEEE International Conference on Systems, Man and Cybernetics, SMC 2010
頁面441-446
頁數6
DOIs
出版狀態Published - 1 12月 2010
事件2010 IEEE International Conference on Systems, Man and Cybernetics, SMC 2010 - Istanbul, Turkey
持續時間: 10 10月 201013 10月 2010

出版系列

名字Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
ISSN(列印)1062-922X

Conference

Conference2010 IEEE International Conference on Systems, Man and Cybernetics, SMC 2010
國家/地區Turkey
城市Istanbul
期間10/10/1013/10/10

指紋

深入研究「Robot motion governing using upper limb EMG signal based on empirical mode decomposition」主題。共同形成了獨特的指紋。

引用此