TY - GEN
T1 - Resource planning and packet forwarding for next-generation multi-hop wireless mesh networks
AU - Lin, Ting-Yu
AU - Fan, Kang Lun
PY - 2007/8/13
Y1 - 2007/8/13
N2 - Most earlier works in the area of wireless mesh network assume a single interface being equipped in each node. In this paper, we consider the next-generation wireless mesh networks in which each node may be equipped with multiple radio interfaces, each capable of running in one of several modes, one of several channels, and each capable of supporting multiple modulations. For example, from off-the-shelf components, one can easily construct a mesh node with multiple IEEE 802.11a/b/g radio interfaces. Our goal is to address the resource planning and packet forwarding issues in such an environment. The proposed methodology is based on linear programming with network flow principles and radio channel access/interference models. Given a network topology, traffic requirements, and gateway capacities, we show how to allocate network interface cards and their channels to fully utilize channel bandwidths. The results can be used by a wireless Internet service provider to plan their networks under a hardware constraint so as to maximize their profits. To the best of our knowledge, this is the first work addressing resource planning in a wireless mesh network. Our numerical results show significant improvement in terms of aggregate network throughput with moderate network-layer fairness.
AB - Most earlier works in the area of wireless mesh network assume a single interface being equipped in each node. In this paper, we consider the next-generation wireless mesh networks in which each node may be equipped with multiple radio interfaces, each capable of running in one of several modes, one of several channels, and each capable of supporting multiple modulations. For example, from off-the-shelf components, one can easily construct a mesh node with multiple IEEE 802.11a/b/g radio interfaces. Our goal is to address the resource planning and packet forwarding issues in such an environment. The proposed methodology is based on linear programming with network flow principles and radio channel access/interference models. Given a network topology, traffic requirements, and gateway capacities, we show how to allocate network interface cards and their channels to fully utilize channel bandwidths. The results can be used by a wireless Internet service provider to plan their networks under a hardware constraint so as to maximize their profits. To the best of our knowledge, this is the first work addressing resource planning in a wireless mesh network. Our numerical results show significant improvement in terms of aggregate network throughput with moderate network-layer fairness.
KW - Channel assignment
KW - Linear programming
KW - Resource planning
KW - Routing
KW - Wireless ad hoc network
KW - Wireless mesh network
UR - http://www.scopus.com/inward/record.url?scp=40949120706&partnerID=8YFLogxK
U2 - 10.1109/ICCCN.2007.4317939
DO - 10.1109/ICCCN.2007.4317939
M3 - Conference contribution
AN - SCOPUS:40949120706
SN - 9781424412518
T3 - Proceedings - International Conference on Computer Communications and Networks, ICCCN
SP - 945
EP - 950
BT - Proceedings of 16th International Conference on Computer Communications and Networks 2007, ICCCN 2007
T2 - 16th International Conference on Computer Communications and Networks 2007, ICCCN 2007
Y2 - 13 August 2007 through 16 August 2007
ER -