摘要
Purpose: We investigated the mechanism and clinical significance of the epithelial-mesenchymal transition (EMT)-induced chemoresistance in head and neck squamous cell carcinoma (HNSCC). Experimental Design: The correlation between the expression of different EMT regulators and chemoresistance genes, such as excision repair cross complementation group 1 (ERCC1), was evaluated in cancer cell lines from the NCI-60 database and four human HNSCC cell lines. Ectopic expression of Snail or short-interference RNA-mediated repression of Snail or ERCC1 was done in HNSCC cell lines. Cell viability was examined for cells after cisplatin treatment. A luciferase reporter assay and chromatin immunoprecipitation were used to identify the transcriptional regulation of ERCC1 by Snail. Immunohistochemical analysis of Snail, Twist1, ERCC1, hypoxia inducible factor-1 α (HIF-1α), and NBS1 were done in samples from 72 HNSCC patients receiving cisplatin-based chemotherapy. Results: The correlation between the expression of Snail and ERCC1 was confirmed in different cell lines, including HNSCC cells. In HNSCC cell lines, overexpression of Snail in the low endogenous Snail/ERCC1 cell lines FaDu or CAL-27 increased ERCC1 expression, and hypoxia or overexpression of NBS1 also upregulated ERCC1. Knockdown of Snail in the high endogenous Snail/ERCC1 cell line OECM-1 downregulated ERCC1 expression and attenuated cisplatin resistance. Furthermore, suppression of ERCC1 in Snail- or NBS1-overexpressing HNSCC cells enhanced sensitivity to cisplatin. Snail directly regulated ERCC1 transcription. In patients with HNSCC, coexpression of Snail and ERCC1 correlated with cisplatin resistance and a poor prognosis. Conclusions: Activation of ERCC1 by Snail is critical in the generation of cisplatin resistance of HNSCC cells.
原文 | English |
---|---|
頁(從 - 到) | 4561-4571 |
頁數 | 11 |
期刊 | Clinical Cancer Research |
卷 | 16 |
發行號 | 18 |
DOIs | |
出版狀態 | Published - 15 9月 2010 |