TY - GEN
T1 - Regularizing Meta-learning via Gradient Dropout
AU - Tseng, Hung Yu
AU - Chen, Yi Wen
AU - Tsai, Yi Hsuan
AU - Liu, Sifei
AU - Lin, Yen Yu
AU - Yang, Ming Hsuan
N1 - Publisher Copyright:
© 2021, Springer Nature Switzerland AG.
PY - 2021/2
Y1 - 2021/2
N2 - With the growing attention on learning-to-learn new tasks using only a few examples, meta-learning has been widely used in numerous problems such as few-shot classification, reinforcement learning, and domain generalization. However, meta-learning models are prone to overfitting when there are no sufficient training tasks for the meta-learners to generalize. Although existing approaches such as Dropout are widely used to address the overfitting problem, these methods are typically designed for regularizing models of a single task in supervised training. In this paper, we introduce a simple yet effective method to alleviate the risk of overfitting for gradient-based meta-learning. Specifically, during the gradient-based adaptation stage, we randomly drop the gradient in the inner-loop optimization of each parameter in deep neural networks, such that the augmented gradients improve generalization to new tasks. We present a general form of the proposed gradient dropout regularization and show that this term can be sampled from either the Bernoulli or Gaussian distribution. To validate the proposed method, we conduct extensive experiments and analysis on numerous computer vision tasks, demonstrating that the gradient dropout regularization mitigates the overfitting problem and improves the performance upon various gradient-based meta-learning frameworks.
AB - With the growing attention on learning-to-learn new tasks using only a few examples, meta-learning has been widely used in numerous problems such as few-shot classification, reinforcement learning, and domain generalization. However, meta-learning models are prone to overfitting when there are no sufficient training tasks for the meta-learners to generalize. Although existing approaches such as Dropout are widely used to address the overfitting problem, these methods are typically designed for regularizing models of a single task in supervised training. In this paper, we introduce a simple yet effective method to alleviate the risk of overfitting for gradient-based meta-learning. Specifically, during the gradient-based adaptation stage, we randomly drop the gradient in the inner-loop optimization of each parameter in deep neural networks, such that the augmented gradients improve generalization to new tasks. We present a general form of the proposed gradient dropout regularization and show that this term can be sampled from either the Bernoulli or Gaussian distribution. To validate the proposed method, we conduct extensive experiments and analysis on numerous computer vision tasks, demonstrating that the gradient dropout regularization mitigates the overfitting problem and improves the performance upon various gradient-based meta-learning frameworks.
UR - http://www.scopus.com/inward/record.url?scp=85103288088&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-69538-5_14
DO - 10.1007/978-3-030-69538-5_14
M3 - Conference contribution
AN - SCOPUS:85103288088
SN - 9783030695378
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 218
EP - 234
BT - Computer Vision – ACCV 2020 - 15th Asian Conference on Computer Vision, 2020, Revised Selected Papers
A2 - Ishikawa, Hiroshi
A2 - Liu, Cheng-Lin
A2 - Pajdla, Tomas
A2 - Shi, Jianbo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 15th Asian Conference on Computer Vision, ACCV 2020
Y2 - 30 November 2020 through 4 December 2020
ER -