TY - CHAP
T1 - Refractory plasmonic materials
AU - Chang, Ching Wen
AU - Mishra, Ragini
AU - Ahn, Hyeyoung
AU - Lee, Ho Wai Howard
AU - Gwo, Shangjr
N1 - Publisher Copyright:
© 2024 Elsevier Inc. All rights reserved.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Recently, refractory plasmonics has attracted a lot of attention due to the importance of high-temperature, high-power energy applications, such as solar energy harvesting, photothermal energy conversion, photochemical reaction, and photocatalysis, which require operations under harsh environmental conditions. In comparison to conventional plasmonic materials, ideal refractory plasmonic materials possess the properties of low cost, low plasmonic loss, as well as thermal, mechanical, and chemical stabilities. Additionally, suitable spectral range and integrability with semiconductor technology are also important considerations. Compared to the most popular plasmonic materials, conductive transition metal nitrides (TMNs), including group IVB nitrides (titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN)) and group VB nitrides (vanadium nitride [VN], niobium nitride [NbN], tantalum nitride [TaN]), are promising plasmonic materials for refractory plasmonic applications due to their high electrical conductivities, extremely high melting temperature, and excellent mechanical, thermal, chemical properties. The fundamental material properties of TMNs have been studied for several decades for various applications requiring mechanical hard and corrosion-resistant operational conditions. Recently, excellent material properties of superconducting TMNs (TiN, NbN, TaN) have also made them a widely applicable material platform for developing critical components in quantum information technologies, such as quantum computation and quantum communication.
AB - Recently, refractory plasmonics has attracted a lot of attention due to the importance of high-temperature, high-power energy applications, such as solar energy harvesting, photothermal energy conversion, photochemical reaction, and photocatalysis, which require operations under harsh environmental conditions. In comparison to conventional plasmonic materials, ideal refractory plasmonic materials possess the properties of low cost, low plasmonic loss, as well as thermal, mechanical, and chemical stabilities. Additionally, suitable spectral range and integrability with semiconductor technology are also important considerations. Compared to the most popular plasmonic materials, conductive transition metal nitrides (TMNs), including group IVB nitrides (titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN)) and group VB nitrides (vanadium nitride [VN], niobium nitride [NbN], tantalum nitride [TaN]), are promising plasmonic materials for refractory plasmonic applications due to their high electrical conductivities, extremely high melting temperature, and excellent mechanical, thermal, chemical properties. The fundamental material properties of TMNs have been studied for several decades for various applications requiring mechanical hard and corrosion-resistant operational conditions. Recently, excellent material properties of superconducting TMNs (TiN, NbN, TaN) have also made them a widely applicable material platform for developing critical components in quantum information technologies, such as quantum computation and quantum communication.
KW - Refractory plasmonics
KW - epsilon-near-zero application
KW - solar energy harvesting
KW - titanium nitride
KW - transition metal nitrides
UR - http://www.scopus.com/inward/record.url?scp=85176327677&partnerID=8YFLogxK
U2 - 10.1016/B978-0-323-85379-8.00005-8
DO - 10.1016/B978-0-323-85379-8.00005-8
M3 - Chapter
AN - SCOPUS:85176327677
SN - 9780323860185
SP - 139
EP - 161
BT - Plasmonic Materials and Metastructures
PB - Elsevier
ER -