跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Reduction of computational complexity and sufficient stack size of the MLSDA by early elimination
Shin Lin Shieh
*
,
Po-Ning Chen
, Yunghsiang S. Han
*
此作品的通信作者
電機工程學系
研究成果
:
Conference contribution
›
同行評審
3
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Reduction of computational complexity and sufficient stack size of the MLSDA by early elimination」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Computational Complexity
100%
Maximum Likelihood
100%
Decoding Algorithm
100%
Stack Length
100%
Sequential Decoding
100%
Sequential Search
50%
Information Length
33%
Information Bits
33%
New Metric
16%
Signal-to-noise Ratio
16%
Low SNR
16%
Convolutional Codes
16%
Decoding Complexity
16%
Viterbi Algorithm
16%
Information Sequence
16%
Fano
16%
Constraint Length
16%
End Node
16%
Maximum Likelihood Decoder
16%
Cutting Rate
16%
Trellis
16%
Engineering
Computational Complexity
100%
Maximum Likelihood
100%
Decoding Algorithm
100%
Sequential Decoding
100%
Nodes
28%
Information Bit
28%
Metrics
14%
Signal-to-Noise Ratio
14%
Constraint Length
14%
Decoding Complexity
14%
Convolutional Code
14%
Computer Science
Computational Complexity
100%
maximum-likelihood
100%
Decoding Algorithm
100%
Sequential Search
42%
Length Information
28%
Information Bit
28%
Noise-to-Signal Ratio
14%
Decoding Complexity
14%
Threshold Level
14%
Information Sequence
14%
Convolutional Code
14%
Viterbi Algorithm
14%
Mathematics
Maximum Likelihood
100%
Decoding Algorithm
100%
Noise Ratio
14%
Convolutional Code
14%
Viterbi Algorithm
14%
Threshold Level
14%