摘要
Volterra equalization (VE) presents substantial performance enhancement for high-speed optical signals but suffers from high computation complexity which limits its physical implementations. To address these limitations, we propose and experimentally demonstrate an elastic net regularization-based pruned Volterra equalization (ENPVE) to reduce the computation complexity while still maintain system performance. Our proposed scheme prunes redundant weight coefficients with a three-phase configuration. Firstly, we pre-train the VE with an adaptive EN-regularizer to identify significant weights. Next, we prune the insignificant weights away. Finally, we retrain the equalizer by fine-tuning the remaining weight coefficients. Our proposed ENPVE achieves superior performance with reduced computation complexity. Compared with conventional VE and L1 regularization-based Volterra equalizer (L1VE), our approach show a complexity reduction of 97.4% and 20.2%, respectively, for an O-band 80-Gbps PAM4 signal at a received optical power of −4 dBm after 40 km SMF transmission.
原文 | English |
---|---|
頁(從 - 到) | 38539-38552 |
頁數 | 14 |
期刊 | Optics Express |
卷 | 28 |
發行號 | 26 |
DOIs | |
出版狀態 | Published - 21 12月 2020 |