TY - JOUR
T1 - Reduced Inter-Voxel White Matter Integrity in Subjective Cognitive Decline
T2 - Diffusion Tensor Imaging With Tract-Based Spatial Statistics Analysis
AU - Chao, Yi Ping
AU - Liu, Po Ting Bertram
AU - Wang, Pei Ning
AU - Cheng, Chia Hsiung
N1 - Publisher Copyright:
Copyright © 2022 Chao, Liu, Wang and Cheng.
PY - 2022/2/23
Y1 - 2022/2/23
N2 - Subjective cognitive decline (SCD), a self-reported worsening in cognition concurrent with normal performance on standardized neuropsychological tests, has gained much attention due to its high risks in the development of mild cognitive impairments or Alzheimer’s disease. The existing cross-sectional diffusion tensor imaging (DTI) studies in SCD have shown extremely controversial findings. Furthermore, all of these studies investigated diffusion properties within the voxel, such as fractional anisotropy, mean diffusivity, or axial diffusivity (DA). However, it remains unclear whether individuals with SCD demonstrate alterations of diffusion profile between voxels and their neighbors, as indexed by local diffusion homogeneity (LDH). We selected 30 healthy controls (HCs) and 23 SCD subjects to acquire their whole-brain DTI. Diffusion images were compared using the tract-based spatial statistics method. Diffusion indices with significant between-group tract clusters were extracted from each individual for further region-of-interest (ROI)-based comparisons. Our results showed that subjects with SCD demonstrated reduced LDH in the left superior frontal gyrus (SFG) and DA in the right anterior cingulate cortex compared with the HC group. In contrast, the SCD group showed higher LDH values in the left lingual gyrus (LG) compared with the HC group. Notably, LDH in the left SFG was significantly and negatively correlated with LDH in the left LG. In conclusion, white matter (WM) integrity in the left SFG, right ACC, and left LG is altered in SCD, suggesting that individuals with SCD exhibit detectable changes in WM tracts before they demonstrate objective cognitive deficits.
AB - Subjective cognitive decline (SCD), a self-reported worsening in cognition concurrent with normal performance on standardized neuropsychological tests, has gained much attention due to its high risks in the development of mild cognitive impairments or Alzheimer’s disease. The existing cross-sectional diffusion tensor imaging (DTI) studies in SCD have shown extremely controversial findings. Furthermore, all of these studies investigated diffusion properties within the voxel, such as fractional anisotropy, mean diffusivity, or axial diffusivity (DA). However, it remains unclear whether individuals with SCD demonstrate alterations of diffusion profile between voxels and their neighbors, as indexed by local diffusion homogeneity (LDH). We selected 30 healthy controls (HCs) and 23 SCD subjects to acquire their whole-brain DTI. Diffusion images were compared using the tract-based spatial statistics method. Diffusion indices with significant between-group tract clusters were extracted from each individual for further region-of-interest (ROI)-based comparisons. Our results showed that subjects with SCD demonstrated reduced LDH in the left superior frontal gyrus (SFG) and DA in the right anterior cingulate cortex compared with the HC group. In contrast, the SCD group showed higher LDH values in the left lingual gyrus (LG) compared with the HC group. Notably, LDH in the left SFG was significantly and negatively correlated with LDH in the left LG. In conclusion, white matter (WM) integrity in the left SFG, right ACC, and left LG is altered in SCD, suggesting that individuals with SCD exhibit detectable changes in WM tracts before they demonstrate objective cognitive deficits.
KW - Alzheimer’s disease (AD)
KW - diffusion tensor imaging (DTI)
KW - local diffusion homogeneity (LDH)
KW - subjective memory complaint (SMC)
KW - white matter
UR - http://www.scopus.com/inward/record.url?scp=85126814633&partnerID=8YFLogxK
U2 - 10.3389/fnagi.2022.810998
DO - 10.3389/fnagi.2022.810998
M3 - Article
AN - SCOPUS:85126814633
SN - 1663-4365
VL - 14
JO - Frontiers in Aging Neuroscience
JF - Frontiers in Aging Neuroscience
M1 - 810998
ER -