摘要
This paper proposes a recurrent fuzzy network design using the hybridization of a multigroup genetic algorithm and particle swarm optimization (R-MGAPSO). The recurrent fuzzy network designed here is the Takagi-Sugeno-Kang (TSK)-type recurrent fuzzy network (TRFN), in which each fuzzy rule comprises spatial and temporal sub-rules. Both the number of fuzzy rules and the parameters in a TRFN are designed simultaneously by R-MGAPSO. In R-MGAPSO, the techniques of variable-length individuals and the local version of particle swarm optimization are incorporated into a genetic algorithm, where individuals with the same length constitute the same group, and there are multigroups in a population. Population evolution consists of three major operations: elite enhancement by particle swarm optimization, sub-rule alignment-based crossover, and mutation. To verify the performance of R-MGAPSO, dynamic plant and a continuous-stirred tank reactor controls are simulated. R-MGAPSO performance is also compared with genetic algorithms in these simulations.
原文 | English |
---|---|
頁(從 - 到) | 3001-3010 |
頁數 | 10 |
期刊 | Neurocomputing |
卷 | 70 |
發行號 | 16-18 |
DOIs | |
出版狀態 | Published - 10月 2007 |