Recommending QA documents for communities of question-answering websites

Duen-Ren Liu*, Chun Kai Huang, Yu Hsuan Chen


研究成果: Conference article同行評審

4 引文 斯高帕斯(Scopus)


Question & Answering (Q&A) websites have become an essential knowledge-sharing platform. This platform provides knowledge-community services where users with common interests or expertise can form a knowledge community to collect and share QA documents. However, due to the massive amount of QAs, information overload can become a major problem. Consequently, a recommendation mechanism is needed to recommend QAs for communities of Q&A websites. Existing studies did not investigate the recommendation mechanisms for knowledge collections in communities of Q&A Websites. In this work, we propose a novel recommendation method to recommend related QAs for communities of Q&A websites. The proposed method recommends QAs by considering the community members' reputations, the push scores and collection time of QAs, the complementary relationships between QAs and their relevance to the communities. Experimental results show that the proposed method outperforms other conventional methods, providing a more effective manner to recommend QA documents to knowledge communities.

頁(從 - 到)139-147
期刊Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
發行號PART 2
出版狀態Published - 11 3月 2013
事件5th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2013 - Kuala Lumpur, Malaysia
持續時間: 18 3月 201320 3月 2013


深入研究「Recommending QA documents for communities of question-answering websites」主題。共同形成了獨特的指紋。