摘要
This study presents a novel system for human action recognition. Two research issues, namely, motion representation and subspace learning, are addressed. In order to have a rich motion descriptor, we propose to combine the distance signal and the width feature so that a silhouette can be characterized in more detail. These two features provide complementary information and are integrated to yield a better discriminative power. The combined features are subsequently quantized into mid-level features using k-means clustering. In the mid-level feature space, we apply the Nonparametric Weighted Feature Extraction (NWFE) to construct a compact yet discriminative subspace model. Finally, we can simply train a Bayes classifier for recognizing human actions. We have conducted a series of experiments on two publicly available datasets to demonstrate the effectiveness of the proposed system. Compared with the existing approaches, our system has a significantly reduced complexity in classification stage while maintaining high accuracy.
原文 | English |
---|---|
文章編號 | 453064 |
期刊 | Eurasip Journal on Advances in Signal Processing |
卷 | 2010 |
DOIs | |
出版狀態 | Published - 2010 |