Recognition of motor imagery electroencephalography using independent component analysis and machine classifiers

Chih I. Hung, Po Lei Lee, Yu Te Wu*, Li Fen Chen, Tzu Chen Yeh, Jen Chuen Hsieh

*此作品的通信作者

研究成果: Article同行評審

63 引文 斯高帕斯(Scopus)

摘要

Motor imagery electroencephalography (EEG), which embodies cortical potentials during mental simulation of left or right finger lifting tasks, can be used to provide neural input signals to activate a brain computer interface (BCI). The effectiveness of such an EEG-based BCI system relies on two indispensable components: distinguishable patterns of brain signals and accurate classifiers. This work aims to extract two reliable neural features, termed contralateral and ipsilateral rebound maps, by removing artifacts from motor imagery EEG based on independent component analysis (ICA), and to employ four classifiers to investigate the efficacy of rebound maps. Results demonstrate that, with the use of ICA, recognition rates for four classifiers (fisher linear discriminant (FLD), back-propagation neural network (BP-NN), radial-basis function neural network (RBF-NN), and support vector machine (SVM)) improved significantly, from 54%, 54%, 57% and 55% to 70.5%, 75.5%, 76.5% and 77.3%, respectively. In addition, the areas under the receiver operating characteristics (ROC) curve, which assess the quality of classification over a wide range of misclassification costs, also improved from .65, .60, .62, and . 64 to .74, .76, .80 and .81, respectively.

原文English
頁(從 - 到)1053-1070
頁數18
期刊Annals of Biomedical Engineering
33
發行號8
DOIs
出版狀態Published - 11月 2005

指紋

深入研究「Recognition of motor imagery electroencephalography using independent component analysis and machine classifiers」主題。共同形成了獨特的指紋。

引用此