TY - JOUR
T1 - Rapid detection of live bacteria in water using nylon filter membrane-integrated centrifugal microfluidics
AU - Chang, Chun Hao
AU - Wang, Chih Ling
AU - Li, Bor Ran
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/9/15
Y1 - 2023/9/15
N2 - Water is one of the most indispensable elements for human beings. People can live without food for a couple of weeks but cannot live without water for a couple of days. Unfortunately, drinking water is not always safe around the world; in many areas, the water for drinking could be contaminated with various microbes. However, the total viable microbe count in water still relies on culture-based methods in laboratories. Therefore, in this work, we report a novel, simple, and highly efficient strategy to detect live bacteria in water via a nylon membrane-integrated centrifugal microfluidic device. A handheld fan and a rechargeable hand warmer were utilized as the centrifugal rotor and the heat resource for reactions, respectively. The bacteria in water can be rapidly concentrated >500-fold by our centrifugation system. After incubation with water-soluble tetrazolium-8 (WST-8), the color change of the nylon membranes can be visually interpreted directly by the naked eye or recorded with a smartphone camera. The whole process can be finished in 3 h, and the detection limit can reach 102 CFU/mL. The detection range ranges from 102 CFU/mL to 105 CFU/mL. The cell counting results of our platform are highly positively correlated with the results of cell counting by the conventional lysogeny broth (LB) agar plate approach or the commercial 3 M Petrifilm™ cell counting plate. Our platform provides a convenient and sensitive strategy for rapid monitoring. We highly anticipate that this platform can improve water quality monitoring in resource-poor countries in the near future.
AB - Water is one of the most indispensable elements for human beings. People can live without food for a couple of weeks but cannot live without water for a couple of days. Unfortunately, drinking water is not always safe around the world; in many areas, the water for drinking could be contaminated with various microbes. However, the total viable microbe count in water still relies on culture-based methods in laboratories. Therefore, in this work, we report a novel, simple, and highly efficient strategy to detect live bacteria in water via a nylon membrane-integrated centrifugal microfluidic device. A handheld fan and a rechargeable hand warmer were utilized as the centrifugal rotor and the heat resource for reactions, respectively. The bacteria in water can be rapidly concentrated >500-fold by our centrifugation system. After incubation with water-soluble tetrazolium-8 (WST-8), the color change of the nylon membranes can be visually interpreted directly by the naked eye or recorded with a smartphone camera. The whole process can be finished in 3 h, and the detection limit can reach 102 CFU/mL. The detection range ranges from 102 CFU/mL to 105 CFU/mL. The cell counting results of our platform are highly positively correlated with the results of cell counting by the conventional lysogeny broth (LB) agar plate approach or the commercial 3 M Petrifilm™ cell counting plate. Our platform provides a convenient and sensitive strategy for rapid monitoring. We highly anticipate that this platform can improve water quality monitoring in resource-poor countries in the near future.
KW - Bacterial detection
KW - Centrifugal microfluidics
KW - Colorimetric detection
KW - Nylon membrane
KW - On-site detection
UR - http://www.scopus.com/inward/record.url?scp=85160785233&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2023.115403
DO - 10.1016/j.bios.2023.115403
M3 - Article
C2 - 37271096
AN - SCOPUS:85160785233
SN - 0956-5663
VL - 236
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
M1 - 115403
ER -