TY - JOUR
T1 - Random telegraph noise in gate-all-around silicon nanowire MOSFETs induced by a single charge trap or random interface traps
AU - Kola, Sekhar Reddy
AU - Li, Yiming
AU - Thoti, Narasimhulu
N1 - Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2020/3/1
Y1 - 2020/3/1
N2 - The random telegraph noise (RTN) in gate-all-around (GAA) silicon (Si) nanowire (NW) metal–oxide–semiconductor field-effect transistors (MOSFETs) induced by a single charge trap (SCT) or random interface traps (RITs) is studied for the first time. An experimentally validated three-dimensional quantum-mechanically-corrected device simulation is advanced to investigate the explored devices. The magnitude of the RTN decreases with increasing gate voltage to different extents for the planar MOSFET, bulk FinFET, and GAA Si NW MOSFET devices, owing to the reduction in the conducting carriers along the channel. For the GAA Si NW MOSFET, the reduction of the fluctuation of threshold voltage in the presence of RITs is about 25 and 3 times when compared with the planar MOSFET and bulk FinFET device, respectively, whereas this reduction in the presence of an SCT is about 6 and 2.6 times, respectively. For the GAA Si NW MOSFET, the reduction of the RTN in the presence of RITs is about 7.5 and 4.7 times when compared with the planar MOSFET and bulk FinFET device, respectively, whereas this reduction in the presence of an SCT is about 22 and 6 times, respectively. At given threshold voltage, compared with the results for the planar MOSFETs and bulk FinFET, the GAA Si NW MOSFET exhibits minimal characteristic variability and RTN owing to the ultimate electrostatic control of the gate from the point of view of electrostatic integrity.
AB - The random telegraph noise (RTN) in gate-all-around (GAA) silicon (Si) nanowire (NW) metal–oxide–semiconductor field-effect transistors (MOSFETs) induced by a single charge trap (SCT) or random interface traps (RITs) is studied for the first time. An experimentally validated three-dimensional quantum-mechanically-corrected device simulation is advanced to investigate the explored devices. The magnitude of the RTN decreases with increasing gate voltage to different extents for the planar MOSFET, bulk FinFET, and GAA Si NW MOSFET devices, owing to the reduction in the conducting carriers along the channel. For the GAA Si NW MOSFET, the reduction of the fluctuation of threshold voltage in the presence of RITs is about 25 and 3 times when compared with the planar MOSFET and bulk FinFET device, respectively, whereas this reduction in the presence of an SCT is about 6 and 2.6 times, respectively. For the GAA Si NW MOSFET, the reduction of the RTN in the presence of RITs is about 7.5 and 4.7 times when compared with the planar MOSFET and bulk FinFET device, respectively, whereas this reduction in the presence of an SCT is about 22 and 6 times, respectively. At given threshold voltage, compared with the results for the planar MOSFETs and bulk FinFET, the GAA Si NW MOSFET exhibits minimal characteristic variability and RTN owing to the ultimate electrostatic control of the gate from the point of view of electrostatic integrity.
KW - Characteristic fluctuation
KW - Experimental calibration
KW - GAA Si NW MOSFETs
KW - Random interface traps
KW - Random telegraph noise
KW - Single charge trap
KW - Statistical device simulation
UR - http://www.scopus.com/inward/record.url?scp=85077274609&partnerID=8YFLogxK
U2 - 10.1007/s10825-019-01438-9
DO - 10.1007/s10825-019-01438-9
M3 - Article
AN - SCOPUS:85077274609
SN - 1569-8025
VL - 19
SP - 253
EP - 262
JO - Journal of Computational Electronics
JF - Journal of Computational Electronics
IS - 1
ER -