Quantum Data-Syndrome Codes

Alexei Ashikhmin*, Ching Yi Lai, Todd A. Brun

*此作品的通信作者

研究成果: Article同行評審

30 引文 斯高帕斯(Scopus)

摘要

Performing active quantum error correction to protect fragile quantum states highly depends on the correctness of measured error syndromes. To obtain reliable error syndromes using imperfect physical circuits, we propose syndrome measurement (SM) and quantum data-syndrome (DS) codes. SM codes protect syndrome with linearly dependent redundant stabilizer measurements. DS codes generalize this idea for simultaneous correction of both data qubits and syndrome bits errors. We study fundamental properties of quantum DS codes, including split weight enumerators, generalized MacWilliams identities, and linear programming bounds. In particular, we derive Singleton and Hamming-type upper bounds on the minimum distance of degenerate quantum DS codes. Then we study random DS codes and show that random DS codes with a relatively small additional syndrome measurements achieve the Gilbert-Varshamov bound of stabilizer codes. Finally, we propose a family of CSS-type quantum DS codes based on classical cyclic codes, which include the Steane code and the quantum Golay code.

原文English
期刊IEEE Journal on Selected Areas in Communications
38
發行號3
DOIs
出版狀態Published - 3月 2020

指紋

深入研究「Quantum Data-Syndrome Codes」主題。共同形成了獨特的指紋。

引用此