Quantitative Prediction of SYNTAX Score for Cardiovascular Artery Disease Patients via the Inverse Problem Algorithm Technique as Artificial Intelligence Assessment in Diagnostics

Meng Chiung Lin, Vincent S. Tseng, Chih Sheng Lin, Shao Wen Chiu, Lung Kwang Pan, Lung Fa Pan*

*此作品的通信作者

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)

摘要

The quantitative prediction of the SYNTAX score for cardiovascular artery disease patients using the inverse problem algorithm (IPA) technique in artificial intelligence was explored in this study. A 29-term semi-empirical formula was defined according to seven risk factors: (1) age, (2) mean arterial pressure, (3) body surface area, (4) pre-prandial blood glucose, (5) low-density-lipoprotein cholesterol, (6) Troponin I, and (7) C-reactive protein. Then, the formula was computed via the STATISTICA 7.0 program to obtain a compromised solution for a 405-patient dataset with a specific loss function [actual-predicted]2 as low as 3.177, whereas 0.0 implies a 100% match between the prediction and observation via “the lower, the better” principle. The IPA technique first created a data matrix [405 × 29] from the included patients’ data and then attempted to derive a compromised solution of the column matrix of 29-term coefficients [29 × 1]. The correlation coefficient, r2, of the regression line for the actual versus predicted SYNTAX score was 0.8958, showing a high coincidence among the dataset. The follow-up verification based on another 105 patients’ data from the same group also had a high correlation coefficient of r2 = 0.8304. Nevertheless, the verified group’s low derived average AT (agreement) (ATavg = 0.308 ± 0.193) also revealed a slight deviation between the theoretical prediction from the STATISTICA 7.0 program and the grades assigned by clinical cardiologists or interventionists. The predicted SYNTAX scores were compared with earlier reported findings based on a single-factor statistical analysis or scanned images obtained by sonography or cardiac catheterization. Cardiologists can obtain the SYNTAX score from the semi-empirical formula for an instant referral before performing a cardiac examination.

原文English
文章編號3180
期刊Diagnostics
12
發行號12
DOIs
出版狀態Published - 12月 2022

指紋

深入研究「Quantitative Prediction of SYNTAX Score for Cardiovascular Artery Disease Patients via the Inverse Problem Algorithm Technique as Artificial Intelligence Assessment in Diagnostics」主題。共同形成了獨特的指紋。

引用此