Quantitative analysis of high-throughput biological data

Hsueh Fen Juan*, Hsuan Cheng Huang*


研究成果: Review article同行評審


The study of multiple “omes,” such as the genome, transcriptome, proteome, and metabolome has become widespread in biomedical research. High-throughput techniques enable the rapid generation of high-dimensional multiomics data. This multiomics approach provides a more complete perspective to study biological systems compared with traditional methods. However, the quantitative analysis and integration of distinct types of high-dimensional omics data remain a challenge. Here, we provide an up-to-date and comprehensive review of the methods used for omics data quantification and integration. We first review the quantitative analysis of not only bulk but also single-cell transcriptomics data, as well as proteomics data. Current methods for reducing batch effects and integrating heterogeneous high-dimensional data are then introduced. Network analysis on large-scale biomedical data can capture the global properties of drugs, targets, and disease relationships, thus enabling a better understanding of biological systems. Current trends in the applications and methods used to extend quantitative omics data analysis to biological networks are also discussed. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning.


深入研究「Quantitative analysis of high-throughput biological data」主題。共同形成了獨特的指紋。