摘要
The titania-nanotube-supported Pt (Pt/Tnt) catalyst was prepared by the photochemical deposition of Pt complex on the titania-nanotube (Tnt) synthesized by the alkaline hydrothermal method. The physicochemical properties of Pt/Tnt catalyst were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 adsorption and desorption isotherms, temperature-programmed reduction and X-ray photoelectron spectroscopy. The Pt/Tnt catalyst exhibited mixed-valence Pt nanoparticles (1-3 nm) dispersed uniformly on the surface of Tnt with a Brunauer-Emmett-Teller surface area of 187 m2/g. The results of the temperature-programmed desorption of CO2 indicated the CO2 adsorption capacity of Tnt was highly enhanced by the supported Pt nanoparticles. In situ Fourier-transform infrared spectroscopy demonstrated that the Pt/Tnt catalyst was highly active for the CO2 hydrogenation toward methane production at relatively low temperature of 100 °C.
原文 | English |
---|---|
頁(從 - 到) | 112-118 |
頁數 | 7 |
期刊 | Applied Catalysis B: Environmental |
卷 | 84 |
發行號 | 1-2 |
DOIs | |
出版狀態 | Published - 25 10月 2008 |