TY - GEN
T1 - Projected efficiency of organic/inorganic hybrid tandem solar cells
AU - Chen, Po Han
AU - Huang, Yang Yue
AU - Pen, Huai Te
AU - Lai, Yi Chun
AU - Tsai, Chia Ying
AU - Tsai, Pei Ting
AU - Cheng, Kai Yuan
AU - Weng, Wei Sheng
AU - Yu, Peichen
AU - Meng, Hsin-Fei
PY - 2013
Y1 - 2013
N2 - We propose a series-connected hybrid tandem solar cell which consists of an organic solar cell (P3HT/PCBM) as the top cell and an organic/crystalline silicon hybrid solar cell (PEDOT:PSS/c-Si nanowires) as the bottom cell. Based on the device structure, the organic materials can be directly spun-cast onto the inorganic silicon substrate with thermally evaporated metal contacts, making solution-based processes possible for rapid and low-cost production. With a proper design, the hybrid device architecture can achieve a high open-circuit voltage and junction-matched photocurrent, offering a promising approach for next-generation high-efficiency photovoltaics. In this work, we established a device model to investigate the photovoltaic characteristics of the proposed hybrid tandem solar cells by combining the organic and hybrid silicon solar cells with a hypothetic recombination layer (RL). First, the model of single junction solar cells is fitted to the current-voltage curve of fabricated devices. Next, we investigate the properties of the RL between the sub-cells and observe strong correlations with the photovoltaic performance of tandem cells. In our preliminary model, we have realized a cell with an open-circuit voltage (Voc), short-circuit current (Jsc), fill-factor (FF) and power conversion efficiency (PCE) of 1.093 V, 9.715 mA/cm2, 43.725 % and 4.644 %, respectively. We will further tailor the properties of the RL, the active-layer thickness of sub-cells, as well as the band alignment, in order to achieve practical device designs. Currently, the characteristics of real hybrid tandem solar cells remain significantly lower than the simulation result. The reason of such limited cell performance is the poor interfacial contact, which makes it difficult to provide efficient recombination and transport for electrons and holes generated from sub-cells. A number of challenging issues, including interface physics and device design will be discussed.
AB - We propose a series-connected hybrid tandem solar cell which consists of an organic solar cell (P3HT/PCBM) as the top cell and an organic/crystalline silicon hybrid solar cell (PEDOT:PSS/c-Si nanowires) as the bottom cell. Based on the device structure, the organic materials can be directly spun-cast onto the inorganic silicon substrate with thermally evaporated metal contacts, making solution-based processes possible for rapid and low-cost production. With a proper design, the hybrid device architecture can achieve a high open-circuit voltage and junction-matched photocurrent, offering a promising approach for next-generation high-efficiency photovoltaics. In this work, we established a device model to investigate the photovoltaic characteristics of the proposed hybrid tandem solar cells by combining the organic and hybrid silicon solar cells with a hypothetic recombination layer (RL). First, the model of single junction solar cells is fitted to the current-voltage curve of fabricated devices. Next, we investigate the properties of the RL between the sub-cells and observe strong correlations with the photovoltaic performance of tandem cells. In our preliminary model, we have realized a cell with an open-circuit voltage (Voc), short-circuit current (Jsc), fill-factor (FF) and power conversion efficiency (PCE) of 1.093 V, 9.715 mA/cm2, 43.725 % and 4.644 %, respectively. We will further tailor the properties of the RL, the active-layer thickness of sub-cells, as well as the band alignment, in order to achieve practical device designs. Currently, the characteristics of real hybrid tandem solar cells remain significantly lower than the simulation result. The reason of such limited cell performance is the poor interfacial contact, which makes it difficult to provide efficient recombination and transport for electrons and holes generated from sub-cells. A number of challenging issues, including interface physics and device design will be discussed.
KW - Hybrid solar cell
KW - Organic solar cell
KW - Simulation of solar cell
KW - Tandem solar cell
UR - http://www.scopus.com/inward/record.url?scp=84896450329&partnerID=8YFLogxK
U2 - 10.1109/PVSC.2013.6745029
DO - 10.1109/PVSC.2013.6745029
M3 - Conference contribution
AN - SCOPUS:84896450329
SN - 9781479932993
T3 - Conference Record of the IEEE Photovoltaic Specialists Conference
SP - 2698
EP - 2700
BT - 39th IEEE Photovoltaic Specialists Conference, PVSC 2013
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 39th IEEE Photovoltaic Specialists Conference, PVSC 2013
Y2 - 16 June 2013 through 21 June 2013
ER -