TY - JOUR
T1 - Predictive intelligence in harmful news identification by BERT-based ensemble learning model with text sentiment analysis
AU - Lin, Szu Yin
AU - Kung, Yun Ching
AU - Leu, Fang Yie
N1 - Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2022/3
Y1 - 2022/3
N2 - In an environment full of disordered information, the media spreads fake or harmful information into the public arena with a speed which is faster than ever before. A news report should ideally be neutral and factual. Excessive personal emotions or viewpoints should not be included. News articles ought not to be intentionally or maliciously written or create a media framing. A harmful news is defined as those explicit or implicit harmful speech in news text that harms people or affects readers’ perception. However, in the current situation, it is difficult to effectively identify and predict fake or harmful news in advance, especially harmful news. Therefore, in this study, we propose a Bidirectional Encoder Representation from Transformers (BERT) based model which applies ensemble learning methods with a text sentiment analysis to identify harmful news, aiming to provide readers with a way to identify harmful news content so as to help them to judge whether the information provided is in a more neutral manner. The working model of the proposed system has two phases. The first phase is collecting harmful news and establishing a development model for analyzing the correlation between text sentiment and harmful news. The second phase is identifying harmful news by analyzing text sentiment with an ensemble learning technique and the BERT model. The purpose is to determine whether the news has harmful intentions. Our experimental results show that the F1-score of the proposed model reaches 66.3%, an increase of 7.8% compared with that of the previous term frequency-inverse document frequency approach which adopts a Lagrangian Support Vector Machine (LSVM) model without using a text sentiment. Moreover, the proposed method achieves a better performance in recognizing various cases of information disorder.
AB - In an environment full of disordered information, the media spreads fake or harmful information into the public arena with a speed which is faster than ever before. A news report should ideally be neutral and factual. Excessive personal emotions or viewpoints should not be included. News articles ought not to be intentionally or maliciously written or create a media framing. A harmful news is defined as those explicit or implicit harmful speech in news text that harms people or affects readers’ perception. However, in the current situation, it is difficult to effectively identify and predict fake or harmful news in advance, especially harmful news. Therefore, in this study, we propose a Bidirectional Encoder Representation from Transformers (BERT) based model which applies ensemble learning methods with a text sentiment analysis to identify harmful news, aiming to provide readers with a way to identify harmful news content so as to help them to judge whether the information provided is in a more neutral manner. The working model of the proposed system has two phases. The first phase is collecting harmful news and establishing a development model for analyzing the correlation between text sentiment and harmful news. The second phase is identifying harmful news by analyzing text sentiment with an ensemble learning technique and the BERT model. The purpose is to determine whether the news has harmful intentions. Our experimental results show that the F1-score of the proposed model reaches 66.3%, an increase of 7.8% compared with that of the previous term frequency-inverse document frequency approach which adopts a Lagrangian Support Vector Machine (LSVM) model without using a text sentiment. Moreover, the proposed method achieves a better performance in recognizing various cases of information disorder.
KW - BERT model
KW - Ensemble learning
KW - Harmful news analysis
KW - Information disorder
KW - Natural language processing
KW - News sentiment analysis
UR - http://www.scopus.com/inward/record.url?scp=85123396510&partnerID=8YFLogxK
U2 - 10.1016/j.ipm.2022.102872
DO - 10.1016/j.ipm.2022.102872
M3 - Article
AN - SCOPUS:85123396510
SN - 0306-4573
VL - 59
JO - Information Processing and Management
JF - Information Processing and Management
IS - 2
M1 - 102872
ER -