Prediction of Mechanical Ventilator Weaning Outcome - A Deep Learning Approach

Kuei Hung Shen*, Yun Ju Yu, Szu Yin Chen, En Ming Chang, Hsiu Li Wu, Cheng Kuan Lin, Yu Chee Tseng

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

Mechanical Ventilation (MV) is a type of therapy that helps patients breathe or breathes for patients when they can't breathe on their own. Doctors and therapists determine whether a patient is ready for weaning of mechanical ventilation based on vitals and various medical test results. This study explores deep learning methods applied to prediction of mechanical ventilator weaning outcome using multiple physiological parameters. Our experiments showed a validation accuracy of 0.682 with limited samples and less features compared to similar studies. We expect to see improved performance with more data and features collected.

原文English
主出版物標題Proceedings - 2023 VTS Asia Pacific Wireless Communications Symposium, APWCS 2023
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9798350316803
DOIs
出版狀態Published - 2023
事件2023 VTS Asia Pacific Wireless Communications Symposium, APWCS 2023 - Tainan City, 台灣
持續時間: 23 8月 202325 8月 2023

出版系列

名字Proceedings - 2023 VTS Asia Pacific Wireless Communications Symposium, APWCS 2023

Conference

Conference2023 VTS Asia Pacific Wireless Communications Symposium, APWCS 2023
國家/地區台灣
城市Tainan City
期間23/08/2325/08/23

指紋

深入研究「Prediction of Mechanical Ventilator Weaning Outcome - A Deep Learning Approach」主題。共同形成了獨特的指紋。

引用此