Predicting the Wafer Material Removal Rate for Semiconductor Chemical Mechanical Polishing Using a Fusion Network

Chien Liang Liu*, Chun Jan Tseng, Wen Hoar Hsaio, Sheng Hao Wu, Shu Rong Lu

*此作品的通信作者

研究成果: Article同行評審

6 引文 斯高帕斯(Scopus)

摘要

Predicting the wafer material removal rate (MRR) is an important step in semiconductor manufacturing for total quality control. This work proposes a deep learning model called a fusion network to predict the MRR, in which we consider separating features into shallow and deep features and use the characteristics of deep learning to perform a fusion of these two kinds of features. In the proposed model, the deep features go through a sequence of nonlinear transformations and the goal is to learn the complex interactions among the features to obtain the deep feature embeddings. Additionally, the proposed method is flexible and can incorporate domain knowledge into the model by encoding the knowledge as shallow features. Once the learning of deep features is completed, the proposed model uses the shallow features and the learned deep feature embeddings to obtain new features for the subsequent layers. This work performs experiments on a dataset from the 2016 Prognostics and Health Management Data Challenge. The experimental results show that the proposed model outperforms the competition winner and three ensemble learning methods. The proposed method is a single model, whereas the comparison methods are ensemble models. Besides the experimental results, we conduct extensive experiments to analyze the proposed method.

原文English
文章編號11478
期刊Applied Sciences (Switzerland)
12
發行號22
DOIs
出版狀態Published - 11月 2022

指紋

深入研究「Predicting the Wafer Material Removal Rate for Semiconductor Chemical Mechanical Polishing Using a Fusion Network」主題。共同形成了獨特的指紋。

引用此