摘要
The threshold voltage shift (Delta Vth) under positive gate bias stress (PGBS), generally found in amorphous InGaZnO thin-film transistors (a-IGZO TFTs), has usually been suppressed by external passivation layers. We report it can also be alleviated by the self-passivation effect of the active layer, where moderately increasing the active layer thickness (d(s)) reduces Delta Vth by 82% in SiOx-passivated a-IGZO TFTs. Our experiments in conjunction with simulations show that the instability of V-th comes from ambient factors at the back channel. Larger d(s) results in lower carrier concentrations at the back channel (N-back), fewer diffusive ions affecting the front channel, and much more stable operations under PGBS. The optimal thickness of an IGZO film simultaneously obtaining a small Delta V-th, near-zero Vth, and sharp sub-threshold swing is about 80-90 nm, thicker than those usually adopted. The self-passivation effect combined with the externally deposited passivation layer can improve the overall device reliability.
原文 | English |
---|---|
文章編號 | 475107 |
期刊 | Journal Physics D: Applied Physics |
卷 | 48 |
發行號 | 47 |
DOIs | |
出版狀態 | Published - 2 12月 2015 |