摘要
Two-dimensional (2D) molybdenum ditelluride (MoTe2) exhibits an intriguing polymorphic nature, showing stable semiconducting 2H and metallic 1T′ phases at room temperature. Polymorphism in MoTe2 presents new opportunities in developing phase-change memory, high- performance transistors, and spintronic devices. However, it also poses challenges in synthesizing homogeneous MoTe2 with a precisely controlled phase. Recently, a new yet simple method using sputtering and 2D solid-phase crystallization (SPC) is proposed for synthesizing high-quality and large-area MoTe2. This study investigates the polymorphism control of MoTe2 synthesis using 2D SPC. The Te/Mo ratio and oxygen content in the as-sputtered films correlate strongly with the final phase and electrical properties of SPC MoTe2. Furthermore, the SPC thermal budget may be exploited for stabilizing a deterministic phase. The comprehensive experiments presented in this work demonstrate the versatile and precise controllability on the MoTe2 phase by using the simple 2D SPC technique.
原文 | English |
---|---|
文章編號 | 8810 |
期刊 | Scientific reports |
卷 | 9 |
發行號 | 1 |
DOIs | |
出版狀態 | Published - 19 6月 2019 |