Plasma Gelsolin Confers Chemoresistance in Ovarian Cancer by Resetting the Relative Abundance and Function of Macrophage Subtypes

Meshach Asare-Werehene, Hideaki Tsuyoshi, Huilin Zhang, Reza Salehi, Chia Yu Chang, Euridice Carmona, Clifford L. Librach, Anne Marie Mes-Masson, Chia Ching Chang, Dylan Burger, Yoshio Yoshida*, Benjamin K. Tsang*

*此作品的通信作者

研究成果: Article同行評審

13 引文 斯高帕斯(Scopus)

摘要

Ovarian cancer (OVCA) is the most lethal gynaecological cancer with a 5-year survival rate less than 50%. Despite new therapeutic strategies, such as immune checkpoint blockers (ICBs), tumor recurrence and drug resistance remain key obstacles in achieving long-term therapeutic success. Therefore, there is an urgent need to understand the cellular mechanisms of immune dysregulation in chemoresistant OVCA in order to harness the host’s immune system to improve survival. The over-expression of plasma gelsolin (pGSN) mRNA is associated with a poorer prognosis in OVCA patients; however, its immuno-modulatory role has not been elucidated. In this study, for the first time, we report pGSN as an inhibitor of M1 macrophage anti-tumor functions in OVCA chemoresistance. Increased epithelial pGSN expression was associated with the loss of chemoresponsiveness and poor survival. While patients with increased M1 macrophage infiltration exhibited better survival due to nitric-oxide-induced ROS accumulation in OVCA cells, cohorts with poor survival had a higher infiltration of M2 macrophages. Interestingly, increased epithelial pGSN expression was significantly associated with the reduced survival benefits of infiltrated M1 macrophages, through apoptosis via increased caspase-3 activation and reduced production of iNOS and TNFα. Additionally, epithelial pGSN expression was an independent prognostic marker in predicting progression-free survival. These findings support our hypothesis that pGSN is a modulator of inflammation and confers chemoresistance in OVCA, in part by resetting the relative abundance and function of macrophage subtypes in the ovarian tumor microenvironment. Our findings raise the possibility that pGSN may be a potential therapeutic target for immune-mediated chemoresistance in OVCA.

原文English
文章編號1039
期刊Cancers
14
發行號4
DOIs
出版狀態Published - 1 2月 2022

指紋

深入研究「Plasma Gelsolin Confers Chemoresistance in Ovarian Cancer by Resetting the Relative Abundance and Function of Macrophage Subtypes」主題。共同形成了獨特的指紋。

引用此