Photolysis of Chlorine Dioxide under UVA Irradiation: Radical Formation, Application in Treating Micropollutants, Formation of Disinfection Byproducts, and Toxicity under Scenarios Relevant to Potable Reuse and Drinking Water

Yi-Hsueh Chuang*, Kai Lin Wu, Wei Chun Lin, Hong Jia Shi

*此作品的通信作者

研究成果: Article同行評審

25 引文 斯高帕斯(Scopus)

摘要

Conversion of potable reuse water utilities and drinking water utilities from a low-pressure UV/H2O2 (LPUV/H2O2) advanced oxidation process (AOP) to alternative AOPs in which oxidants can effectively absorb photons and rapidly generate radicals has attracted great interest. Herein, we propose a novel UVA/ClO2 AOP for different water treatment scenarios because of reduced photon absorption by the background matrix and high molar absorptivity for ClO2 at UVA wavelengths. While the photolysis of ClO2 produces Cl + O2 or ClO + O(3P) via distinct product channels, we determined the parameters needed to accurately model the loss of oxidants and the formation of byproducts and combined a kinetic model with experimental data to determine quantum yields (Φ). Modeling incorporating the optimized Φ simultaneously predicted oxidant loss and the formation of major products −HOCl, Cl-, and ClO3-. We also systematically investigated the removal of three contaminants exhibiting different radical reactivities, the formation of 35 regulated and unregulated halogenated disinfection byproducts (DBPs), DBP-associated toxicity, and N-acetylcysteine thiol reactivity in synthetic or authentic RO permeates/surface waters treated by different AOPs. The kinetic model developed in this study was used to optimize operating conditions to control undesired products and improve contaminant removal efficiency. The results indicate that UVA/ClO2 can outperform LPUV/H2O2 in terms of electrical energy per order of contaminant degradation, disinfection byproduct formation, and toxicity indices.

原文English
頁(從 - 到)2593-2604
頁數12
期刊Environmental Science and Technology
56
發行號4
DOIs
出版狀態Published - 15 2月 2022

指紋

深入研究「Photolysis of Chlorine Dioxide under UVA Irradiation: Radical Formation, Application in Treating Micropollutants, Formation of Disinfection Byproducts, and Toxicity under Scenarios Relevant to Potable Reuse and Drinking Water」主題。共同形成了獨特的指紋。

引用此