TY - JOUR
T1 - Perturbations of pulsatile hemodynamics and clinical outcomes in patients with acute heart failure and reduced, mid-range or preserved ejection fraction
AU - Huang, Wei Ming
AU - Sung, Shih Hsien
AU - Yu, Wen Chung
AU - Cheng, Hao Min
AU - Huang, Chi Jung
AU - Guo, Chao Yu
AU - Lu, Dai Yin
AU - Lee, Ching Wei
AU - Chen, Chen Huan
N1 - Publisher Copyright:
© 2019 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019/8/1
Y1 - 2019/8/1
N2 - Background Heart failure with mid-range ejection fraction (HFmrEF) has been proposed as a new phenotype of heart failure. We therefore investigated the pulsatile hemodynamic characteristics and outcomes in patients with HFmrEF, in comparison with those with reduced (HFrEF) or preserved (HFpEF) ejection fraction. Methods The study was composed of two cohorts of patients hospitalized due to acute heart failure. Pulsatile hemodynamic measures, including carotid-femoral pulse wave velocity (cf-PWV), carotid pulse pressure (cPP), amplitude of the backward pressure wave (Pb) and carotid augmentation index (cAIx), were recorded on admission and before discharge in Cohort A (n = 230, mean age 69.9 ±15.4 years), and long-term follow-up was performed in Cohort B (n = 2677, mean age 76.3 ± 33.4 years). Results In Cohort A, patients with HFmrEF had persistently greater cf-PWV, cPP, Pb, and cAI than those with HFrEF, both on admission and before discharge. In contrast, patients with HFmrEF and HFpEF had similar pulsatile hemodynamic characteristics. In cohort B, patients with HFmrEF and HFrEF had similar three-year mortality rates and both were significantly higher than that in patients with HFpEF (both P values < 0.05). Conclusions Patients with HFmrEF were characterized by a worse left ventricular systolic function than patients with HFpEF and excessive wave reflections than patients with HFrEF. Future studies are required to confirm that the unfavorable ventriculo-arterial coupling in HFmrEF might play a role in the pathogenesis of high long-term mortality in these patients.
AB - Background Heart failure with mid-range ejection fraction (HFmrEF) has been proposed as a new phenotype of heart failure. We therefore investigated the pulsatile hemodynamic characteristics and outcomes in patients with HFmrEF, in comparison with those with reduced (HFrEF) or preserved (HFpEF) ejection fraction. Methods The study was composed of two cohorts of patients hospitalized due to acute heart failure. Pulsatile hemodynamic measures, including carotid-femoral pulse wave velocity (cf-PWV), carotid pulse pressure (cPP), amplitude of the backward pressure wave (Pb) and carotid augmentation index (cAIx), were recorded on admission and before discharge in Cohort A (n = 230, mean age 69.9 ±15.4 years), and long-term follow-up was performed in Cohort B (n = 2677, mean age 76.3 ± 33.4 years). Results In Cohort A, patients with HFmrEF had persistently greater cf-PWV, cPP, Pb, and cAI than those with HFrEF, both on admission and before discharge. In contrast, patients with HFmrEF and HFpEF had similar pulsatile hemodynamic characteristics. In cohort B, patients with HFmrEF and HFrEF had similar three-year mortality rates and both were significantly higher than that in patients with HFpEF (both P values < 0.05). Conclusions Patients with HFmrEF were characterized by a worse left ventricular systolic function than patients with HFpEF and excessive wave reflections than patients with HFrEF. Future studies are required to confirm that the unfavorable ventriculo-arterial coupling in HFmrEF might play a role in the pathogenesis of high long-term mortality in these patients.
UR - http://www.scopus.com/inward/record.url?scp=85070313779&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0220183
DO - 10.1371/journal.pone.0220183
M3 - Article
C2 - 31381586
AN - SCOPUS:85070313779
SN - 1932-6203
VL - 14
JO - PLoS ONE
JF - PLoS ONE
IS - 8
M1 - e0220183
ER -