Personalized EDM Subject Generation via Co-factored User-Subject Embedding

Yu Hsiu Chen, Zhi Rui Tam, Hong Han Shuai*

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

This paper introduces the Co-Factored User-Subject Embedding based Personalized EDM Subject Generation Framework (COUPES), a model for creating personalized Electronic Direct Mail (EDM) subjects. COUPES adapts to individual content and style preferences using a dual-encoder structure to process product descriptions and template features. It employs a soft template-based selective encoder and matrix co-factorization for nuanced user embeddings. Experiments show that COUPES excels in generating engaging, personalized subjects and reconstructing recommendation ratings, proving its effectiveness in personalized marketing and recommendation systems.

原文English
主出版物標題Advances in Knowledge Discovery and Data Mining - 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Proceedings
編輯De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
發行者Springer Science and Business Media Deutschland GmbH
頁面55-67
頁數13
ISBN(列印)9789819722525
DOIs
出版狀態Published - 2024
事件28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024 - Taipei, Taiwan
持續時間: 7 5月 202410 5月 2024

出版系列

名字Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
14646 LNAI
ISSN(列印)0302-9743
ISSN(電子)1611-3349

Conference

Conference28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024
國家/地區Taiwan
城市Taipei
期間7/05/2410/05/24

指紋

深入研究「Personalized EDM Subject Generation via Co-factored User-Subject Embedding」主題。共同形成了獨特的指紋。

引用此