跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Periodic Attention-based Stacked Sequence to Sequence framework for long-term travel time prediction
Yu Huang, Hao Dai,
Vincent S. Tseng
*
*
此作品的通信作者
數據科學與工程研究所
新世代功能性物質研究中心
研究成果
:
Article
›
同行評審
15
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Periodic Attention-based Stacked Sequence to Sequence framework for long-term travel time prediction」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Travel Time
100%
Attention-based
100%
Sequence Framework
100%
Travel Time Prediction
100%
Sequence-to-sequence
100%
Periodic Segment
100%
Deep Learning Methods
50%
Long-term Traffic Prediction
50%
Big Data
25%
Prediction Accuracy
25%
Intelligent Transportation Systems
25%
Main Components
25%
Traffic Data
25%
Route Planning
25%
Traffic Management
25%
Prediction Problems
25%
Travel Time Analysis
25%
Error Propagation
25%
Historical Information
25%
Sequential Prediction
25%
Learning-based Framework
25%
Term Dependency
25%
SMAPE
25%
Future Travel
25%
Traffic Schedule
25%
Computer Science
Research Community
100%
Prediction Time
100%
Traffic Prediction
100%
Deep Learning Method
100%
Seq2Seq
100%
Experimental Result
50%
Prediction Accuracy
50%
Big Data
50%
Term Prediction
50%
Traffic Management
50%
Historical Information
50%
Main Component
50%
Term Dependency
50%
Intelligent Transportation System
50%
Engineering
Deep Learning Method
100%
Metrics
50%
Experimental Result
50%
Intelligent Transportation System
50%
Time Analysis
50%
Road
50%
Prediction Problem
50%
Traffic Management
50%
Traffic Data
50%
Main Component
50%
Generation Component
50%
Big Data
50%