TY - GEN
T1 - Performance of caching-based D2D video distribution with measured popularity distributions
AU - Lee, Ming-Chun
AU - Ji, Mingyue
AU - Molisch, Andreas F.
AU - Sastry, Nishanth
PY - 2019/12/9
Y1 - 2019/12/9
N2 - On-demand video accounts for the majority of wireless data traffic. Video distribution schemes based on caching combined with device-to-device (D2D) communications promise order-of-magnitude greater spectral efficiency for video delivery, but hinge on the principle of concentrated demand distributions. This paper presents, for the first time, the analysis and evaluations of the throughput-outage tradeoff of such schemes based on measured cellular demand distributions. In particular, we use a dataset with more than 100 million requests from the BBC iPlayer, a popular video streaming service in the U.K., as the foundation of the analysis and evaluations. We present an achievable scaling law based on the practical popularity distribution, and show that such scaling law is identical to those reported in the literature. We find that also for the numerical evaluations based on a realistic setup, order-of-magnitude improvements can be achieved. Our results indicate that the benefits promised by the caching-based D2D in the literature could be retained for cellular networks in practice.
AB - On-demand video accounts for the majority of wireless data traffic. Video distribution schemes based on caching combined with device-to-device (D2D) communications promise order-of-magnitude greater spectral efficiency for video delivery, but hinge on the principle of concentrated demand distributions. This paper presents, for the first time, the analysis and evaluations of the throughput-outage tradeoff of such schemes based on measured cellular demand distributions. In particular, we use a dataset with more than 100 million requests from the BBC iPlayer, a popular video streaming service in the U.K., as the foundation of the analysis and evaluations. We present an achievable scaling law based on the practical popularity distribution, and show that such scaling law is identical to those reported in the literature. We find that also for the numerical evaluations based on a realistic setup, order-of-magnitude improvements can be achieved. Our results indicate that the benefits promised by the caching-based D2D in the literature could be retained for cellular networks in practice.
UR - http://www.scopus.com/inward/record.url?scp=85081979666&partnerID=8YFLogxK
U2 - 10.1109/GLOBECOM38437.2019.9013504
DO - 10.1109/GLOBECOM38437.2019.9013504
M3 - Conference contribution
AN - SCOPUS:85081979666
T3 - 2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings
BT - 2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 IEEE Global Communications Conference, GLOBECOM 2019
Y2 - 9 December 2019 through 13 December 2019
ER -