Parametric Dimension Reduction by Preserving Local Structure

Chien Hsun Lai*, Ming Feng Kuo, Yun Hsuan Lien, Kuan An Su, Yu Shuen Wang

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

We extend a well-known dimension reduction method, t-distributed stochastic neighbor embedding (t-SNE), from non-parametric to parametric by training neural networks. The main advantage of a parametric technique is the generalization of handling new data, which is beneficial for streaming data visualization. While previous parametric methods either require a network pre-training by the restricted Boltzmann machine or intermediate results obtained from the traditional non-parametric t-SNE, we found that recent network training skills can enable a direct optimization for the t-SNE objective function. Accordingly, our method achieves high embedding quality while enjoying generalization. Due to mini-batch network training, our parametric dimension reduction method is highly efficient. For evaluation, we compared our method to several baselines on a variety of datasets. Experiment results demonstrate the feasibility of our method. The source code is available at https://github.com/a07458666/parametric_dr.

原文English
主出版物標題Proceedings - 2022 IEEE Visualization Conference - Short Papers, VIS 2022
發行者Institute of Electrical and Electronics Engineers Inc.
頁面75-79
頁數5
ISBN(電子)9781665488129
DOIs
出版狀態Published - 2022
事件2022 IEEE Visualization Conference, VIS 2022 - Virtual, Online, United States
持續時間: 16 10月 202221 10月 2022

出版系列

名字Proceedings - 2022 IEEE Visualization Conference - Short Papers, VIS 2022

Conference

Conference2022 IEEE Visualization Conference, VIS 2022
國家/地區United States
城市Virtual, Online
期間16/10/2221/10/22

指紋

深入研究「Parametric Dimension Reduction by Preserving Local Structure」主題。共同形成了獨特的指紋。

引用此