Parallel and distributed architecture of genetic algorithm on Apache Hadoop and Spark

Hau Chun Lu, F. J. Hwang, Yao Huei Huang*

*此作品的通信作者

研究成果: Article同行評審

34 引文 斯高帕斯(Scopus)

摘要

The genetic algorithm (GA), one of the best-known metaheuristic algorithms, has been extensively utilized in various fields of management science, operational research, and industrial engineering. The efficiency of GAs in solving large-scale optimization problems would be enhanced if the iterative processes required by the genetic operators can be implemented in a parallel and distributed computing architecture. Apache Hadoop has recently been one of the most popular systems for distributed storage and parallel processing of big data. By integrating the GA highly into Apache Hadoop, this study proposes an advanced GA parallel and distributed computing architecture that achieves the effectiveness and efficiency of GA evolution. Characterized by the sophisticated mechanism of dispatching the GA core operators into Apache Hadoop, the developed computing framework fits well with the cloud computing model. The presented GA parallelization architecture outperforms the state-of-the-art reference architectures according to the computational experiments where the testing instances of traveling salesman problems are employed. Our numerical experiments also demonstrate that the proposed architecture can readily be extended to Apache Spark.

原文English
文章編號106497
期刊Applied Soft Computing Journal
95
DOIs
出版狀態Published - 10月 2020

指紋

深入研究「Parallel and distributed architecture of genetic algorithm on Apache Hadoop and Spark」主題。共同形成了獨特的指紋。

引用此