Optimal stability estimate in the inverse boundary value problem for periodic potentials with partial data

Sombuddha Bhattacharyya, Cătălin I. Cârstea*

*此作品的通信作者

研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)

摘要

We consider the inverse boundary value problem for operators of the form −△+q in an infinite domain Ω=R×ω⊂R1+n, n≥3, with a periodic potential q. For Dirichlet-to-Neumann data localized on a portion of the boundary of the form Γ1=R×γ1, with γ1 being the complement either of a flat or spherical portion of ∂ω, we prove that a log-type stability estimate holds.

原文English
頁(從 - 到)642-654
頁數13
期刊Journal of Mathematical Analysis and Applications
466
發行號1
DOIs
出版狀態Published - 1 10月 2018

指紋

深入研究「Optimal stability estimate in the inverse boundary value problem for periodic potentials with partial data」主題。共同形成了獨特的指紋。

引用此