摘要
The optimal solution of estimating a set of dynamic state in the presence of a random bias employing a two-stage Kalman estimator is addressed. It is well known that, under an algebraic constraint, the optimal estimate of the system state can be obtained from a two-stage Kalman estimator. Unfortunately, this algebraic constraint is seldom satisfied for practical systems. This paper proposes a general form of the optimal solution of the two-stage estimator, in which the algebraic constraint is removed. Furthermore, it is shown that, by applying the adaptive process noise covariance concept, the optimal solution of the two-stage Kalman estimator is composed of a modified bias-free filter and an bias-compensating filter, which can be viewed as a generalized form of the conventional two-stage Kalman estimator.
原文 | English |
---|---|
頁(從 - 到) | 1532-1537 |
頁數 | 6 |
期刊 | Proceedings of the IEEE Conference on Decision and Control |
卷 | 2 |
DOIs | |
出版狀態 | Published - 1 12月 1995 |
事件 | Proceedings of the 1995 34th IEEE Conference on Decision and Control. Part 1 (of 4) - New Orleans, LA, USA 持續時間: 13 12月 1995 → 15 12月 1995 |