摘要
Researchers have found that obtaining optimal solutions for groundwater resource-planning problems, while simultaneously considering time-varying pumping rates, is a challenging task. This study integrates an artificial neural network (ANN) and constrained differential dynamic programming (CDDP) as simulation-optimization model, called ANN-CDDP. Optimal solutions for a groundwater resource-planning problem are determined while simultaneously considering time-varying pumping rates. A trained ANN is used as the transition function to predict ground water table under variable pumping conditions. The results show that the ANN-CDDP reduces computational time by as much as 94-5% when compared to the time required by the conventional model. The proposed optimization model saves a considerable amount of computational time for solving large-scale problems.
原文 | English |
---|---|
頁(從 - 到) | 2765-2773 |
頁數 | 9 |
期刊 | Hydrological Processes |
卷 | 23 |
發行號 | 19 |
DOIs | |
出版狀態 | Published - 15 9月 2009 |