Optically coupled engineered upconversion nanoparticles and graphene for a high responsivity broadband photodetector

Mukesh Kumar Thakur, Akash Gupta, Muhammad Yusuf Fakhri, Ruei San Chen, Chien Ting Wu, Kung Hsuan Lin, Surojit Chattopadhyay*

*此作品的通信作者

研究成果: Article同行評審

27 引文 斯高帕斯(Scopus)

摘要

A hybrid upconversion nanoparticle (UCNP)-graphene composite is demonstrated as a high-sensitivity and high-gain photodetector. The 980 nm multiphoton absorbing UCNPs are used as the photoabsorber, and optimized graphene is used as an efficient charge transporter. Although this device class is in its infancy, we show how critical engineering of the UCNPs, with a silica (SiO2) shell, helps to couple it optically with graphene to get a superior device. This initial report of UCNP-graphene optical coupling is expressed as fluorescence enhancement/quenching of the former in the presence of the latter. While the published literature relies mostly on fluorescence quenching in the UCNPs, our devices use both fluorescence quenching (using core UCNPs), and enhancement (using UCNP@SiO2) to significantly enhance the detector parameters. For example, the photoresponsivity of the core-UCNP device was ∼1.52 × 104 A W-1 which could be improved to ∼2.7 × 104 A W-1 (at 980 nm, power density of ∼31.84 μW cm-2, and under a 1.0 V bias) with the UCNP@SiO2 device. The responsivity, gain, and detectivity thus obtained are the highest reported so far for this class of composite photodetectors. The device could detect signals from domestic hand-held appliances such as laser pointers, cellphone flashlights, and air-conditioning remotes. This work will further the knowledge of device photophysics in this class of hybrids.

原文English
頁(從 - 到)9716-9725
頁數10
期刊Nanoscale
11
發行號19
DOIs
出版狀態Published - 21 5月 2019

指紋

深入研究「Optically coupled engineered upconversion nanoparticles and graphene for a high responsivity broadband photodetector」主題。共同形成了獨特的指紋。

引用此