Online Pedestrian Tracking Using A Dense Fisheye Camera Network With Edge Computing

Tsaipei Wang*, Sheng Ho Chiang

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

This paper describes a dense fisheye camera network for pedestrian tracking in an indoor environment, with the target scenario being an unmanned store. Each fisheye camera is connected to a single-board computer for local tracking using its own images. The local tracks are integrated and global tracks generated at a central computer in an online manner. The local trackers are based on the popular DeepSORT algorithm, and the global tracker combines distance and novel specialization based factors to update global tracks from local tracks, avoiding the need of matching local tracks. Experiments on a self-collected dataset demonstrate highly accurate tracking over several minutes of videos.

原文English
主出版物標題2023 IEEE International Conference on Image Processing, ICIP 2023 - Proceedings
發行者IEEE Computer Society
頁面3518-3522
頁數5
ISBN(電子)9781728198354
DOIs
出版狀態Published - 2023
事件30th IEEE International Conference on Image Processing, ICIP 2023 - Kuala Lumpur, 馬來西亞
持續時間: 8 10月 202311 10月 2023

出版系列

名字Proceedings - International Conference on Image Processing, ICIP
ISSN(列印)1522-4880

Conference

Conference30th IEEE International Conference on Image Processing, ICIP 2023
國家/地區馬來西亞
城市Kuala Lumpur
期間8/10/2311/10/23

指紋

深入研究「Online Pedestrian Tracking Using A Dense Fisheye Camera Network With Edge Computing」主題。共同形成了獨特的指紋。

引用此