摘要
This article proposes a useful extension of the ANOVA F-test for examining mean differences for evaluating the comparability of standardized mean effects. The equivalence procedure presumably suffers from the same disadvantage as the traditional ANOVA F-statistic regarding the violations of homogeneous variance assumption. In view of the absence of vital clarification for theory development and supportive technique, this article provides a critical exposition of the extended Welch test for the equivalence of standardized means. To enhance the usefulness of equivalence testing, the theoretical properties and practical implications of the Welch-type procedure are demonstrated. Moreover, the corresponding power and sample size algorithms are described for advance planning of equivalence studies. Despite the approximate nature, the accuracy of Type I error rate, statistical power, and sample size calculations of the suggested equivalence test is justified under a wide range of model configurations. The proposed procedures are demonstrated with the data of a clinical trial regarding the comparative study of four antihypertensive treatments. A complete set of computer codes is presented to calculate the corresponding critical values, p-values, power levels, and sample sizes for data analysis and design planning of equivalence studies.
原文 | American English |
---|---|
文章編號 | 10.1080/19466315.2019.1654915 |
頁(從 - 到) | 344-351 |
頁數 | 8 |
期刊 | Statistics in Biopharmaceutical Research |
卷 | 12 |
發行號 | 3 |
DOIs | |
出版狀態 | Published - 1 7月 2020 |