TY - GEN
T1 - On finite-length analysis and channel dispersion for broadcast packet erasure channels with feedback
AU - Lin, Shih Chun
AU - Wang, Chih Chun
AU - Wang, I. Hsiang
AU - Huang, Yu Chih
AU - Lai, Yi Chun
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/7/12
Y1 - 2021/7/12
N2 - Motivated by the applications for low-delay communication networks, the finite-length analysis, or channel dispersion identification, of the multi-user channel is very important. Recent studies also incorporate the effects of feedback in point-to-point and common-message broadcast channels (BCs). However, with private messages and feedback, finite-length results for BCs are much more scarce. Though it is known that feedback can strictly enlarge the capacity, the ultimate feedback capacity regions remain unknown for even some classical channels including Gaussian BCs. In this work, we study the two-user broadcast packet erasure channel (PEC) with causal feedback, which is one of the cleanest feedback capacity results and the capacity region can be achieved by elegant linear network coding (LNC). We first derive a new finite-length outer bound for any LNCs and then accompanying inner bound by analyzing a three-phase LNC. For the outer-bound, we adopt a linear-space-based framework, which can successfully find the LNC capacity. However, naively applying this method in finite-length regime will result in a loose outer bound. Thus a new bounding technique based on carefully labelling each time slot according to the type of LNC transmitted is proposed. Simulation results show that the sum-rate gap between our inner and outer bounds is within 0.02 bits/channel use. Asymptotic analysis also shows that our bounds bracket the channel dispersion of LNC feedback capacity for broadcast PEC to within a factor of Q-l (E/2)/Q-l (E).
AB - Motivated by the applications for low-delay communication networks, the finite-length analysis, or channel dispersion identification, of the multi-user channel is very important. Recent studies also incorporate the effects of feedback in point-to-point and common-message broadcast channels (BCs). However, with private messages and feedback, finite-length results for BCs are much more scarce. Though it is known that feedback can strictly enlarge the capacity, the ultimate feedback capacity regions remain unknown for even some classical channels including Gaussian BCs. In this work, we study the two-user broadcast packet erasure channel (PEC) with causal feedback, which is one of the cleanest feedback capacity results and the capacity region can be achieved by elegant linear network coding (LNC). We first derive a new finite-length outer bound for any LNCs and then accompanying inner bound by analyzing a three-phase LNC. For the outer-bound, we adopt a linear-space-based framework, which can successfully find the LNC capacity. However, naively applying this method in finite-length regime will result in a loose outer bound. Thus a new bounding technique based on carefully labelling each time slot according to the type of LNC transmitted is proposed. Simulation results show that the sum-rate gap between our inner and outer bounds is within 0.02 bits/channel use. Asymptotic analysis also shows that our bounds bracket the channel dispersion of LNC feedback capacity for broadcast PEC to within a factor of Q-l (E/2)/Q-l (E).
UR - http://www.scopus.com/inward/record.url?scp=85115114402&partnerID=8YFLogxK
U2 - 10.1109/ISIT45174.2021.9517889
DO - 10.1109/ISIT45174.2021.9517889
M3 - Conference contribution
AN - SCOPUS:85115114402
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 1871
EP - 1876
BT - 2021 IEEE International Symposium on Information Theory, ISIT 2021 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE International Symposium on Information Theory, ISIT 2021
Y2 - 12 July 2021 through 20 July 2021
ER -