On characterizing optimal Wasserstein GAN solutions for non-Gaussian data

Yu Jui Huang*, Shih Chun Lin*, Yu Chih Huang, Kuan Hui Lyu*, Hsin Hua Shen*, Wan Yi Lin

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

The generative adversarial network (GAN) aims to approximate an unknown distribution via a parameterized neural network (NN). While GANs have been widely applied in reinforcement and semi-supervised learning as well as computer vision tasks, selecting their parameters often needs an exhaustive search and only a few selection methods can be proved to be theoretically optimal. One of the most promising GAN variants is the Wasserstein GAN (WGAN). Prior work on optimal parameters for WGAN is limited to the linear-quadratic-Gaussian (LQG) setting, where the NN is linear and the data is Gaussian. In this paper, we focus on the characterization of optimal WGAN parameters beyond the LQG setting. We derive closed-form optimal parameters for one-dimensional WGANs with non-linear sigmoid and ReLU activation functions. Extensions to high-dimensional WGANs are also discussed. Empirical studies show that our closed-form WGAN parameters have good convergence behavior with data under both Gaussian and Laplace distributions.

原文English
主出版物標題2023 IEEE International Symposium on Information Theory, ISIT 2023
發行者Institute of Electrical and Electronics Engineers Inc.
頁面909-914
頁數6
ISBN(電子)9781665475549
DOIs
出版狀態Published - 2023
事件2023 IEEE International Symposium on Information Theory, ISIT 2023 - Taipei, 台灣
持續時間: 25 6月 202330 6月 2023

出版系列

名字IEEE International Symposium on Information Theory - Proceedings
2023-June
ISSN(列印)2157-8095

Conference

Conference2023 IEEE International Symposium on Information Theory, ISIT 2023
國家/地區台灣
城市Taipei
期間25/06/2330/06/23

指紋

深入研究「On characterizing optimal Wasserstein GAN solutions for non-Gaussian data」主題。共同形成了獨特的指紋。

引用此