OMRA: ONLINE MOTION RESOLUTION ADAPTATION TO REMEDY DOMAIN SHIFT IN LEARNED HIERARCHICAL B-FRAME CODING

Zong Lin Gao, Sang NguyenQuang, Wen Hsiao Peng, Xiem HoangVan

研究成果: Conference contribution同行評審

摘要

Learned hierarchical B-frame coding aims to leverage bidirectional reference frames for better coding efficiency. However, the domain shift between training and test scenarios due to dataset limitations poses a challenge. This issue arises from training the codec with small groups of pictures (GOP) but testing it on large GOPs. Specifically, the motion estimation network, when trained on small GOPs, is unable to handle large motion at test time, incurring a negative impact on compression performance. To mitigate the domain shift, we present an online motion resolution adaptation (OMRA) method. It adapts the spatial resolution of video frames on a per-frame basis to suit the capability of the motion estimation network in a pre-trained B-frame codec. Our OMRA is an online, inference technique. It need not re-train the codec and is readily applicable to existing B-frame codecs that adopt hierarchical bi-directional prediction. Experimental results show that OMRA significantly enhances the compression performance of two state-of-the-art learned B-frame codecs on commonly used datasets.

原文English
主出版物標題2024 IEEE International Conference on Image Processing, ICIP 2024 - Proceedings
發行者IEEE Computer Society
頁面1960-1966
頁數7
ISBN(電子)9798350349399
DOIs
出版狀態Published - 2024
事件31st IEEE International Conference on Image Processing, ICIP 2024 - Abu Dhabi, 阿拉伯聯合酋長國
持續時間: 27 10月 202430 10月 2024

出版系列

名字Proceedings - International Conference on Image Processing, ICIP
ISSN(列印)1522-4880

Conference

Conference31st IEEE International Conference on Image Processing, ICIP 2024
國家/地區阿拉伯聯合酋長國
城市Abu Dhabi
期間27/10/2430/10/24

指紋

深入研究「OMRA: ONLINE MOTION RESOLUTION ADAPTATION TO REMEDY DOMAIN SHIFT IN LEARNED HIERARCHICAL B-FRAME CODING」主題。共同形成了獨特的指紋。

引用此