Node-pancyclicity and edge-pancyclicity of hypercube variants

Ken S. Hu, Shyun Shyun Yeoh, Chiuyuan Chen*, Lih Hsing Hsu

*此作品的通信作者

研究成果: Article同行評審

37 引文 斯高帕斯(Scopus)

摘要

Twisted cubes, crossed cubes, Möbius cubes, and locally twisted cubes are some of the widely studied hypercube variants. The 4-pancyclicity of twisted cubes, crossed cubes, Möbius cubes, locally twisted cubes and the 4-edge-pancyclicity of twisted cubes, crossed cubes, Möbius cubes are proven in [C.P. Chang, J.N. Wang, L.H. Hsu, Topological properties of twisted cube, Inform. Sci. 113 (1999) 147-167; C.P. Chang, T.Y. Sung, L.H. Hsu, Edge congestion and topological properties of crossed cubes, IEEE Trans. Parall. Distr. 11 (1) (2000) 64-80; J. Fan, Hamilton-connectivity and cycle embedding of the Möbius cubes, Inform. Process. Lett. 82 (2002) 113-117; X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-pancyclic, Appl. Math. Lett. 17 (2004) 919-925; J. Fan, N. Yu, X. Jia, X. Lin, Embedding of cycles in twisted cubes with edge-pancyclic, Algorithmica, submitted for publication; J. Fan, X. Lin, X. Jia, Node-pancyclic and edge-pancyclic of crossed cubes, Inform. Process. Lett. 93 (2005) 133-138; M. Xu, J.M. Xu, Edge-pancyclicity of Möbius cubes, Inform. Process. Lett. 96 (2005) 136-140], respectively. It should be noted that 4-edge-pancyclicity implies 4-node-pancyclicity which further implies 4-pancyclicity. In this paper, we outline an approach to prove the 4-edge-pancyclicity of some hypercube variants and we prove in particular that Möbius cubes and locally twisted cubes are 4-edge-pancyclic.

原文English
頁(從 - 到)1-7
頁數7
期刊Information Processing Letters
102
發行號1
DOIs
出版狀態Published - 15 4月 2007

指紋

深入研究「Node-pancyclicity and edge-pancyclicity of hypercube variants」主題。共同形成了獨特的指紋。

引用此