跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
News Recommendation Based on Collaborative Semantic Topic Models and Recommendation Adjustment
Yu Shan Liao, Jun Yi Lu,
Duen Ren Liu
資訊管理研究所
研究成果
:
Conference contribution
›
同行評審
6
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「News Recommendation Based on Collaborative Semantic Topic Models and Recommendation Adjustment」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Ensemble Model
100%
Semantic Topics
100%
News Websites
100%
News Articles
100%
Model Modification
100%
News Recommendation
100%
Recommendation Adjustment
100%
User Preference
50%
Adjustment Mechanism
50%
Experimental Performance Evaluation
50%
Online Ratings
50%
Recommendation Approach
50%
Word Embedding
50%
Preference-based
50%
Latent Topics
50%
Recommendation Quality
50%
Novel Recommendation
50%
Online News
50%
Recommendation List
50%
Latent Dirichlet Allocation
50%
Online Assessment
50%
Matrix Factorization
50%
Real News
50%
Offline Experiments
50%
Computer Science
Experimental Result
100%
User Preference
100%
Latent Dirichlet Allocation
100%
Matrix Factorization
100%
Online Evaluation
100%
Word Embedding
100%