Newly reduced graphene oxide/gold oxide neural-chemical interface on multi-channel neural probes to enhance the electrochemical properties for biosensors

Ta Chung Liu, Chao Yi Chu, You Yin Chen, San Yuan Chen*

*此作品的通信作者

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)

摘要

In this study, a facile one-step Cyclic Voltammetry (CV) electrophoresis was proposed for designing a reduced graphene oxide/gold oxide (rGO/AuOx) modified electrode by using chloride ions (Cl-) with the simultaneous occurrence of gold oxidation and GO reduction to induce the intimate attachment of negatively charged rGO sheets on the positively charged Au+/Au3+ clusters by electrostatic interaction. The surface microstructure and the oxygen functional groups of rGO/AuOx can be tuned by controlling the dissolution rate of gold via the deposition scan rate. At a low deposition scan rate, the rGO/AuOx electrode with well-dispersive rGO sheets and large active sites can induce rapid electron transfer to promote H2O2 detection. The amperometric response results displayed a relative fast response of less than 5 s with a low detection limit of 0.63 μM (S/N = 3). Also, the rGO/AuOx neural-chemical interface can be modified at the multi-channels on neural probe and they exhibited excellent sensing performance to H2O2. The results demonstrated that the rGO/AuOx modified electrode integrated with a neural probe using this one-step electrochemical deposition can provide a faster response and higher sensitivity by optimizing and controlling the surface microstructures of rGO/AuOx, which would serve as a platform for medical application such as biosensors for multi-sensing.

原文English
頁(從 - 到)27614-27622
頁數9
期刊RSC Advances
6
發行號33
DOIs
出版狀態Published - 2016

指紋

深入研究「Newly reduced graphene oxide/gold oxide neural-chemical interface on multi-channel neural probes to enhance the electrochemical properties for biosensors」主題。共同形成了獨特的指紋。

引用此