Neuroprotective effects of baicalein on acrolein-induced neurotoxicity in the nigrostriatal dopaminergic system of rat brain

Wei Zhong Zhao, Hsiang Tsui Wang, Hui Ju Huang, Yu Li Lo*, Anya Maan Yuh Lin

*此作品的通信作者

研究成果: Article同行評審

33 引文 斯高帕斯(Scopus)

摘要

Elevated levels of acrolein, an α,β-unsaturated aldehyde are detected in the brain of patients with Parkinson’s disease (PD). In the present study, the neuroprotective effect of baicalein (a phenolic flavonoid in the dried root of Scutellaria baicalensis Georgi) on acrolein-induced neurodegeneration of nigrostriatal dopaminergic system was investigated using local infusion of acrolein in the substantia nigra (SN) of rat brain. Systemic administration of baicalein (30 mg/kg, i.p.) significantly attenuated acrolein-induced elevations in 4-hydroxy-2-noneal (a product of lipid peroxida-tion), N-(3-formyl-3,4-dehydropiperidino)lysine (a biomarker of acrolein-conjugated proteins), and heme-oxygenase-1 levels (a redox-regulated protein) in the infused SN, indicating that baicalein inhibited acrolein-induced oxidative stress and protein conjugation. Furthermore, baicalein reduced acrolein-induced elevations in glial fibrillary acidic protein (a biomarker of activated astrocytes), ED-1 (a biomarker of activated microglia), and mature cathepsin B levels (a cysteine lysosom-al protease), suggesting that baicalein attenuated acrolein-induced neuroinflammation. Moreover, baicalein attenuated acrolein-induced caspase 1 activation (a pro-inflammatory caspase) and interleukin-1β levels, indicating that baicalein prevented acrolein-induced inflammasome activation. In addition, baicalein significantly attenuated acrolein-induced caspase 3 activation (a biomarker of apoptosis) as well as acrolein-induced elevation in receptor interacting protein kinase (RIPK) 3 levels (an initiator of necroptosis), indicating that baicalein attenuated apoptosis and necroptosis. At the same time, baicalein mitigated acrolein-induced reduction in dopamine levels in the striatum ipsilateral to acrolein-infused SN. In conclusion, our data suggest that baicalein is neuroprotective via inhibiting oxidative stress, protein conjugation, and inflammation. Furthermore, baicalein prevents acrolein-induced program cell deaths, suggesting that baicalein is therapeutically useful for slowing PD progression.

原文English
頁(從 - 到)130-137
頁數8
期刊Molecular Neurobiology
55
發行號1
DOIs
出版狀態Published - 1月 2018

指紋

深入研究「Neuroprotective effects of baicalein on acrolein-induced neurotoxicity in the nigrostriatal dopaminergic system of rat brain」主題。共同形成了獨特的指紋。

引用此