Neural mechanism of atrial fibrillation: Insight from global high density frequency mapping

Li Wei Lo, Chuen Wang Chiou*, Yenn Jiang Lin, Shih Huang Lee, Shih Ann Chen


研究成果: Article同行評審

9 引文 斯高帕斯(Scopus)


Frequency Mapping During Neurally Mediated AF. Background: It has been demonstrated that intrinsic cardiac autonomic activation of ganglionated plexi (GPs) exhibits a frequency gradient from the center to the periphery with limited mapping. Objective: We aimed to use a global mapping tool (Ensite Array) to identify the frequency distribution and clarify the interaction between the extrinsic/intrinsic autonomic systems. Methods: A mid sternal thoractomy was performed in anesthetized dogs. High frequency stimulation (20 Hz, 0.1 ms duration) was applied to locate the GPs and achieve vagosympathetic stimulation (VNS). There were 4 major GPs, which were located near the 4 pulmonary vein (PV) ostia, and a third fat pad (SVC-Ao) GP that was located near the superior vena cava (SVC)-right atrial (RA) junction. Results: Without VNS (n = 12), the left atrial (LA) mean (8.20 ± 0.11 vs 7.95 ± 0.30 Hz, P = 0.04) and max (9.86 ± 0.28 vs 9.43 ± 0.29 Hz, P = 0.03) DFs were higher during the PV ostial GP stimulation than the SVC-Ao GP stimulation. The LA max DFs were located not only at the primary GPs but also the nearby secondary PV ostial GPs. The RA mean DF (8.36 ± 0.05 vs 7.99 ± 0.19 Hz, P = 0.04) was higher during SVC-Ao GP stimulation than PV ostial GP stimulation. The max DF was located inside the SVC during SVC-Ao GP stimulation and at the RA septum during PV ostial GP stimulation. With VNS (n = 12), the LA mean and max DFs between the PV ostial and SVC-Ao GP stimulation were similar. The DF distribution shifted to non-GP LA sites during both the PV ostial and SVC-Ao GP stimulation. Conclusion: The findings indicate that the AF was caused by an interaction between the PV ostial GPs during intrinsic autonomic stimulation, whereas the non-GP LA sites were responsible for the AF induced by an extrinsic neural input.

頁(從 - 到)1049-1056
期刊Journal of cardiovascular electrophysiology
出版狀態Published - 9月 2011


深入研究「Neural mechanism of atrial fibrillation: Insight from global high density frequency mapping」主題。共同形成了獨特的指紋。