NCUEE-NLP at SemEval-2022 Task 11: Chinese Named Entity Recognition Using the BERT-BiLSTM-CRF Model

Lung Hao Lee, Chien Huan Lu, Tzu Mi Lin

研究成果: Conference contribution同行評審

10 引文 斯高帕斯(Scopus)

摘要

This study describes the model design of the NCUEE-NLP system for the Chinese track of the SemEval-2022 MultiCoNER task. We use the BERT embedding for character representation and train the BiLSTM-CRF model to recognize complex named entities. A total of 21 teams participated in this track, with each team allowed a maximum of six submissions. Our best submission, with a macro-averaging F1-score of 0.7418, ranked the seventh position out of 21 teams.

原文English
主出版物標題SemEval 2022 - 16th International Workshop on Semantic Evaluation, Proceedings of the Workshop
編輯Guy Emerson, Natalie Schluter, Gabriel Stanovsky, Ritesh Kumar, Alexis Palmer, Nathan Schneider, Siddharth Singh, Shyam Ratan
發行者Association for Computational Linguistics (ACL)
頁面1597-1602
頁數6
ISBN(電子)9781955917803
DOIs
出版狀態Published - 2022
事件16th International Workshop on Semantic Evaluation, SemEval 2022 - Seattle, 美國
持續時間: 14 7月 202215 7月 2022

出版系列

名字SemEval 2022 - 16th International Workshop on Semantic Evaluation, Proceedings of the Workshop

Conference

Conference16th International Workshop on Semantic Evaluation, SemEval 2022
國家/地區美國
城市Seattle
期間14/07/2215/07/22

指紋

深入研究「NCUEE-NLP at SemEval-2022 Task 11: Chinese Named Entity Recognition Using the BERT-BiLSTM-CRF Model」主題。共同形成了獨特的指紋。

引用此