MVSNet++: Learning Depth-Based Attention Pyramid Features for Multi-View Stereo

Po Heng Chen, Hsiao Chien Yang, Kuan-Wen Chen*, Yong-Sheng Chen


研究成果: Article同行評審

32 引文 斯高帕斯(Scopus)


The goal of Multi-View Stereo (MVS) is to reconstruct 3D point-cloud model from multiple views. On the basis of the considerable progress of deep learning, an increasing amount of research has moved from traditional MVS methods to learning-based ones. However, two issues remain unsolved in the existing state-of-the-art methods: (1) only high-level information is considered for depth estimation. This may reduce the localization accuracy of 3D points as the learned model lacks spatial information; and (2) most of the methods require additional post-processing or network refinement to generate a smooth 3D model. This significantly increases the number of model parameters or the computational complexity. To this end, we propose MVSNet++, an end-to-end trainable network for dense depth estimation. Such an estimated depth map can further be applied to 3D model reconstruction. Different from previous methods, in the proposed method, we first adopt feature pyramid structures for both feature extraction and cost volume regularization. This can lead to accurate 3D point localization by fusing multi-level information. To generate smooth depth map, we then carefully integrate instance normalization into MVSNet++ without increasing model parameters and computational burden. Furthermore, we additionally design three loss functions and integrate Curriculum Learning framework into the training process, which can lead to an accurate reconstruction of 3D model. MVSNet++ is evaluated on DTU and Tanks Temples benchmarks with comprehensive ablation studies. Experimental results demonstrate that our proposed method performs favorably against previous state-of-the-art methods, showing the accuracy and effectiveness of the proposed MVSNet++.

頁(從 - 到)7261-7273
期刊IEEE Transactions on Image Processing
出版狀態Published - 12 6月 2020


深入研究「MVSNet++: Learning Depth-Based Attention Pyramid Features for Multi-View Stereo」主題。共同形成了獨特的指紋。