TY - GEN
T1 - Mutual information-based 3D surface matching with applications to face recognition and brain mapping
AU - Wang, Yalin
AU - Chiang, Ming Chang
AU - Thompson, Paul M.
PY - 2005
Y1 - 2005
N2 - Face recognition and many medical imaging applications require the computation of dense correspondence vector fields that match one surface with another. In brain imaging, surface-based registration is useful for tracking brain change, and for creating statistical shape models of anatomy. Based on surface correspondences, metrics can also be designed to measure differences in facial geometry and expressions. To avoid the need for a large set of manually-defined landmarks to constrain these surface correspondences, we developed an algorithm to automate the matching of surface features. It extends the mutual information method to automatically match general 3D surfaces (including surfaces with a branching topology). We use diffeomorphic flows to optimally align the Riemann surface structures of two surfaces. First, we use holomorphic 1-forms to induce consistent conformal grids on both surfaces. High genus surfaces are mapped to a set of rectangles in the Euclidean plane, and closed genus-zero surfaces are mapped to the sphere. Next, we compute stable geometric features (mean curvature and conformai factor) and pull them back as scalar fields onto the 2D parameter domains. Mutual information is used as a cost functional to drive a fluid flow in the parameter domain that optimally aligns these surface features. A diffeomorphic surface-to-surface mapping is then recovered that matches surfaces in 3D. Lastly, we present a spectral method that ensures that the grids induced on the target surface remain conformal when pulled through the correspondence field. Using the chain rule, we express the gradient of the mutual information between surfaces in the conformal basis of the source surface. This finite-dimensional linear space generates all conformal reparameterizations of the surface. Illustrative experiments apply the method to face recognition and to the registration of brain structures, such as the hippocampus in 3D MRI scans, a key step in understanding brain shape alterations in Alzheimer's disease and schizophrenia.
AB - Face recognition and many medical imaging applications require the computation of dense correspondence vector fields that match one surface with another. In brain imaging, surface-based registration is useful for tracking brain change, and for creating statistical shape models of anatomy. Based on surface correspondences, metrics can also be designed to measure differences in facial geometry and expressions. To avoid the need for a large set of manually-defined landmarks to constrain these surface correspondences, we developed an algorithm to automate the matching of surface features. It extends the mutual information method to automatically match general 3D surfaces (including surfaces with a branching topology). We use diffeomorphic flows to optimally align the Riemann surface structures of two surfaces. First, we use holomorphic 1-forms to induce consistent conformal grids on both surfaces. High genus surfaces are mapped to a set of rectangles in the Euclidean plane, and closed genus-zero surfaces are mapped to the sphere. Next, we compute stable geometric features (mean curvature and conformai factor) and pull them back as scalar fields onto the 2D parameter domains. Mutual information is used as a cost functional to drive a fluid flow in the parameter domain that optimally aligns these surface features. A diffeomorphic surface-to-surface mapping is then recovered that matches surfaces in 3D. Lastly, we present a spectral method that ensures that the grids induced on the target surface remain conformal when pulled through the correspondence field. Using the chain rule, we express the gradient of the mutual information between surfaces in the conformal basis of the source surface. This finite-dimensional linear space generates all conformal reparameterizations of the surface. Illustrative experiments apply the method to face recognition and to the registration of brain structures, such as the hippocampus in 3D MRI scans, a key step in understanding brain shape alterations in Alzheimer's disease and schizophrenia.
UR - http://www.scopus.com/inward/record.url?scp=33745934273&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2005.165
DO - 10.1109/ICCV.2005.165
M3 - Conference contribution
AN - SCOPUS:33745934273
SN - 076952334X
SN - 9780769523347
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 527
EP - 534
BT - Proceedings - 10th IEEE International Conference on Computer Vision, ICCV 2005
T2 - Proceedings - 10th IEEE International Conference on Computer Vision, ICCV 2005
Y2 - 17 October 2005 through 20 October 2005
ER -