TY - JOUR
T1 - Motion sickness simulation based on sensorimotor control
AU - Hu, Chen Hui
AU - Lin, Wen-Chieh
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Sensorimotor control is an essential mechanism for human motions, from involuntary reflex actions to intentional motor skill learning, such as walking, jumping, and swimming. Humans perform various motions according to different task goals and physiological sensory perception; however, most existing computational approaches for motion simulation and generation rarely consider the effects of human perception. The assumption of perfect perception (i.e., no sensory errors) of existing approaches restricts the generated motion types and makes dynamical reactions less realistic. We propose a general framework for sensorimotor control, integrating a balance controller and a vestibular model, to generate perception-aware motions. By exploiting simulated perception, more natural responses that are closer to human reactions can be generated. For example, motion sickness caused by the impairments in the function of the vestibular system induces postural instability and body sway. Our approach generates physically correct motions and reasonable reactions to external stimuli since the spatial orientation estimation by the vestibular system is essential to preserve balance. We evaluate our framework by demonstrating standing balance on a rotational platform with different angular speeds and duration. The generated motions show that either faster angular speeds or longer rotational duration cause more severe motion sickness. Our results demonstrate that sensorimotor control, integrating human perception and physically-based control, offers considerable potential for providing more human-like behaviors, especially for perceptual illusions of human beings, including visual, proprioceptive, and tactile sensations.
AB - Sensorimotor control is an essential mechanism for human motions, from involuntary reflex actions to intentional motor skill learning, such as walking, jumping, and swimming. Humans perform various motions according to different task goals and physiological sensory perception; however, most existing computational approaches for motion simulation and generation rarely consider the effects of human perception. The assumption of perfect perception (i.e., no sensory errors) of existing approaches restricts the generated motion types and makes dynamical reactions less realistic. We propose a general framework for sensorimotor control, integrating a balance controller and a vestibular model, to generate perception-aware motions. By exploiting simulated perception, more natural responses that are closer to human reactions can be generated. For example, motion sickness caused by the impairments in the function of the vestibular system induces postural instability and body sway. Our approach generates physically correct motions and reasonable reactions to external stimuli since the spatial orientation estimation by the vestibular system is essential to preserve balance. We evaluate our framework by demonstrating standing balance on a rotational platform with different angular speeds and duration. The generated motions show that either faster angular speeds or longer rotational duration cause more severe motion sickness. Our results demonstrate that sensorimotor control, integrating human perception and physically-based control, offers considerable potential for providing more human-like behaviors, especially for perceptual illusions of human beings, including visual, proprioceptive, and tactile sensations.
KW - Computing methodologies → Animation
KW - Physical simulation
UR - http://www.scopus.com/inward/record.url?scp=85051537199&partnerID=8YFLogxK
U2 - 10.1111/cgf.13377
DO - 10.1111/cgf.13377
M3 - Article
AN - SCOPUS:85051537199
SN - 0167-7055
VL - 37
SP - 475
EP - 484
JO - Computer Graphics Forum
JF - Computer Graphics Forum
IS - 2
ER -